Posts

Introducing Pyenv pip-upgrade Plugin

In my previous articles (Configuring Python Workspace and Configuring Python Workspace: Poetry), I have described how I use pyenv to create several virtual environments. With the lapse of time, the tools that you install in these environments become outdated and you need a tool to update them. I develop a pyenv plugin that updates all packages in all or particular pyenv environments and in this post I describe how to use it.

How to Include Diff into Git Commit Message

De facto, git is a standard version control system now. Not surprisingly that I use it for my projects. Working on a project, I often face with a situation when I have made a number of changes, and I need to describe them in a commit message. Of course, I try following the line when every change results in a new commit, however, on practice, sometime I face with the situation when I need to describe a number of changes in one commit message. If there are a number of changes (or peculiarities), mentioning all of them could be a challenge. Of course, you can open an additional terminal and do diffing, however, it would be great if this information is included in the commit message.

Moving Website to Hugo Modules

Hugo 0.56.0 introduced one notable feature called “Hugo Modules”. Hugo Modules allow you to add more flexibility to your Hugo project organization. Using this feature, you can import different modules that will implement one or more Hugo component types. For instance, you can use one module that provides layout for your website, and another one to add more shortcodes, etc. Moreover, this feature enables you to mount your own directories or files that are not necessary tracked by Hugo.

For my webpage, I use a modified “Academic” theme that has been recently renamed to Wowchemy. As a part of the rebranding, the author migrated it to use Hugo Modules. I have devoted some time to understand how Hugo Modules work and how to migrate my website to use this feature. This blog post is mostly a memo for myself, however, it may be useful for others as well.

Outdated Pytest Version in Poetry

Problem

Recently, I have updated my operating system, and as a part of this process I have installed the latest poetry version (a tool for Python dependency management). When I have started a new project using my typical routine, I have discovered that poetry cannot install development dependencies exiting with a weird SolverProblemError error.

Clearing Output Data in Jupyter Notebooks using Pre-commit Framework

Recently, I have participated in a project at AI Superior aimed at the analysis of a dataset with sensitive data. So as the data have to remain private, initially we shared the dataset through a secure channel and took measures to prevent its accidental distribution (we put the dataset in a separate directory and configured git to ignore this folder and other directories containing intermediate processing results). However, working on this project I have noticed that Jupyter notebook, that is a kind of standard tool used for data analysis, may be a source of sensitive data leakage.

VSCode Snippets to Speed Up Time/Task Management Files Creation

In the series of articles on my time/task management approach, one article is dedicated to the tool set (VSCode + OrgMode) I use to track my tasks and performance. Since then, a number of people has asked me to share the templates of the week, month and year files what I did after the first request. However, recently I have discovered an approach that allows me to speed up the creation of the year, month and week files. In this article, I share the details of this improvement.

Starting New Python Project in VSCode

In the previous article, I have described how poetry can be used to configure Python workspace and to create a new Python package project. Although poetry creates the structure of a package and adds some boilerplate code, in order to develop this package in VSCode we need to do some additional configurations. In this post, I describe how to start developing a new Python package project in VSCode.

Using VSCode as a Default Git Editor

Last several years I use git as my version control system (VCS) both for personal and work projects. If you are working in a team, usage of a VCS brings you a lot of benefits like change tracking, history viewing, merge issues resolving, etc. However, I have found it very handy to use even for personal projects: with git I can try different solutions simultaneously and then select the better one. Moreover, I can easily remember what I have done for a project recently. This task becomes much easier if commit messages for repository changes are written clearly and in accordance with the patterns and rules recommended by the VCS. Developers have already developed the best practices how to write commit messages. I refer the interested reader, e.g., to the article written by Chris Beams. In this article, I explain how VSCode can help writing commit messages in accordance with the rules.

Configuring Python Workspace: Poetry

In the previous article, I have described my approach to configure Python workspace. I mentioned there that I do not use poetry because it “cannot be used to specify dependencies when you work with Jupyter notebooks”. However, people (@BasicWolf and @iroln) from the Russian tech website Habr recommended me to look at poetry closer, as it apparently can fulfil all my requirements. “Two heads are better than one”, and I started to explore this tool deeper. Indeed, I have managed to fulfil all my requirements with this tool but with some configurations. In this post, I describe how to configure it to meet my requirements and how to use it.

Configuring Python Workspace

I like Python. For the last several years, I have used it extensively in my research. There are a lot of useful libraries, and it is an equally powerful language for writing simple scripts, producing large systems, doing data analysis and machine learning. It is very laconic and allows you to use different programming paradigms. It is quite easy to start developing in Python: modern operating systems are either already supplied with a Python interpreter or provide you with an easy way to install it. However, when you start developing more professionally using this language, you discover that its ecosystem is quite complicated. In this article, I try to shed a bit more light on the topic how to configure Python workspace.