
FSquaDRA: Fast Detection of

Repackaged Applications

Yury Zhauniarovich, Olga Gadyatskaya, Bruno Crispo,

Francesco La Spina, Ermanno Moser
zhauniarovich, gadyatskaya, crispo, laspina, moser@disi.unitn.it

University of Trento

Repackaging

2

Android Package (.apk)

assets

AndroidManifest.xml

uncompiled resources

.dex

files

resources.

arsc

Developer
signature

Signing

Developer

certificate
(same)

Adversary

certificate
(different)

Rebranding
(good)

Plagiarizing
(bad)

Device

Motivation

 App repackaging is very easy on Android:
– Fetch an app Disassemble Change Assemble

Sign with own certificate Publish

 The code of the application can be easily
changed
– smali/backsmali, AndroGuard, dex2jar, apktool, etc.

 Plagiarizing is used to:
– steal advertising revenues (14% of ad revenues)*

– collect user database (10% of user base)*

– malware distribution (86% of Android malware samples
use this distribution channel)**

3

* C.Gibler et al. “Adrob: examining the landscape and impact of Android application

plagiarism”. In Proc. of MobiSys ’13

** Y. Zhou, X. Jiang. “Dissecting Android malware: Characterization and Evolution”.

In Proc. of S&P ’12

Problem Statement

Issue: How to detect repackaged Android
applications

 fast

– 1.1+ million apps on Google Play *

– 190+ third-party markets **

– quadratic complexity

 in effective way?

– need for a similarity metric to what extent one app is
similar to another

4

* N. Viennot et al. “A Measurement Study of Google Play”. In Proc. of SIGMETRICS ‘14

** T. Vidas, N. Christin. “Sweetening Android Lemon Markets: Measuring and

Combating Malware in Application Marketplaces”. In Proc. of CODASPY ‘13

FSquaDRA: Idea

 Repackaged apps want to
maintain the “look and feel” of
the originals

– Opera Mini fake: 230 of 234 files
are the same

 IDEA: compare apps based
on the included resource files
(same files same apps)

5

FSquaDRA: Approach

 Compute hashes of all files inside two apps

 Calculate Jaccard index for the extracted
hashes:

6

 Compare the obtained value with a threshold

 PROBLEM: How to compute hashes
efficiently?

Hi – set of hashes of files in apk i

Speeding Up Hash Calculations

As a part of application signing process SHA1
digest of each file inside apk is calculated

7

FSquaDRA: Evaluation

 Dataset:

– 55779 apk samples

– from 8 markets including Google Play

 Pairwise comparison of all apps in the dataset

 Objectives:

– plagiarizing rates for apps signed with different certificate

– rebranding rates for apps signed with the same certificate

 Evaluate Efficiency and Effectiveness

8

Evaluation: Pairwise Comparison

9

Evaluation: Efficiency

 FSquaDRA is implemented as a single-
threaded Java program

– not really optimized

 We ran experiments on a commodity laptop
(2.9 GHz Intel Core i7, 8GB RAM)

– 15,10 hours to load hashes into memory

– 64,41 hours to compute similarity score for all app
pairs

 On average 6700 app pairs per second

10

Evaluation: Effectiveness

 Metrics:

– False Positives? For apps FSquaDRA considers
repackaged, are they actually repackaged?

– False Negatives? For apps FSquaDRA considers
different, are they really not repackaged?

 Approaches:

– analyze FSquaDRA on a dataset of repackaged apps

– compare FSquaDRA metrics with the state-of-the-art tools

 Problems:

– no public dataset with repackaged apps

– only one public tool: AndroGuard

11

Effectiveness: Evaluation Setup

 AndroGuard – open-source tool by A. Desnos:
– computes code-based similarity metric

– slow (65 sec to compare an app pair on average)

– does not produce symmetric values

 We use average score of (A,B) and (B,A) as the
similarity score for AndroGuard (ags)

 For each selected bin:
– randomly picked 100 app pairs with different

certificates and 100 app pairs with the same
certificate;

– calculated their AndroGuard similarity score (ags)

– compared with FSquaDRA similarity score (fss)

12

Effectiveness: Plagiarizing Results

(different certificates, fss>0)

13

Correlation: 0.7919

Difference (fss-ags):

-mean: -0.0412

-st. dev.: 0.1862

-median: -0.0480

Red: line of best fit

Blue: LOWESS

(locally weighted

scatterplot
smoothing line)

Effectiveness: Rebranding Results

(same certificates, fss>0)

14

Correlation: 0.5807

Difference (fss-ags):

-mean: -0.2761

-st. dev.: 0.2704

-median: -0.2518

Red: line of best fit

Blue: LOWESS

(locally weighted

scatterplot
smoothing line)

FSquaDRA: Features

 The first solution detecting repackaged apps based on resource
files

 Our resource-based similarity score is highly correlated with the
code-based similarity score of AndroGuard (0.79 for plagiarizing,
0.58 for rebranding)

 Faster than any known competitor

– DNADroid by J. Crussell et al. (ESORICS 2012) - 0.012 app pair/sec

• PDG subgraph isomorphism

• Hadoop MapReduce framework with a server and 3 desktops

– Juxtapp by S. Hanna et al. (DIMVA 2012) - 49.4 app pair/sec

• k-grams of opcodes hashing feature vector Jaccard distance

• Intel Xeon CPU (8 cores) , 8GB of RAM

– Our approach - 6700 app pair/sec

 Open-source *

15* https://github.com/zyrikby/FSquaDRA

FSquaDRA: Future Work

 The proposed solution is not sustainable:

– attackers can change a bit in all files in apk

– adversaries can add a lot of new resources to
decrease the similarity score

– libraries containing resources may influence the
similarity score

 No clear values for false positive and false negative
scores

– absence of publicly available dataset

– almost all already developed tools (except
AndroGuard) are not available

16

THANK YOU

17

zhauniarovich@disi.unitn.it

