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Motivation

 App repackaging is very easy on Android:
– Fetch an app  Disassemble  Change  Assemble 

Sign with own certificate  Publish 

 The code of the application can be easily 
changed
– smali/backsmali, AndroGuard, dex2jar, apktool, etc.

 Plagiarizing is used to:
– steal advertising revenues (14% of ad revenues)*

– collect user database (10% of user base)*

– malware distribution (86% of Android malware samples 
use this distribution channel)**

3

* C.Gibler et al. “Adrob: examining the landscape and impact of Android application 

plagiarism”. In Proc. of MobiSys ’13

**   Y. Zhou, X. Jiang. “Dissecting Android malware: Characterization and Evolution”. 

In Proc. of S&P ’12



Problem Statement

Issue: How to detect repackaged Android 
applications

 fast

– 1.1+ million apps on Google Play *

– 190+ third-party markets **

– quadratic complexity

 in effective way? 

– need for a similarity metric to what extent one app is 
similar to another
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* N. Viennot et al. “A Measurement Study of Google Play”. In Proc. of SIGMETRICS  ‘14

**  T. Vidas, N. Christin. “Sweetening Android Lemon Markets: Measuring and 

Combating Malware in Application Marketplaces”. In Proc. of CODASPY ‘13



FSquaDRA: Idea

 Repackaged apps want to 
maintain the “look and feel” of 
the originals

– Opera Mini fake: 230 of 234 files 
are the same

 IDEA: compare apps based 
on the included resource files 
(same files  same apps)
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FSquaDRA: Approach

 Compute hashes of all files inside two apps

 Calculate Jaccard index for the extracted 
hashes:
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 Compare the obtained value with a threshold

 PROBLEM: How to compute hashes 
efficiently?

Hi – set of hashes of files in apk i



Speeding Up Hash Calculations

As a part of application signing process SHA1 
digest of each file inside apk is calculated 
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FSquaDRA: Evaluation

 Dataset:

– 55779 apk samples

– from 8 markets including Google Play

 Pairwise comparison of all apps in the dataset

 Objectives:

– plagiarizing rates for apps signed with different certificate

– rebranding rates for apps signed with the same certificate

 Evaluate Efficiency and Effectiveness
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Evaluation: Pairwise Comparison
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Evaluation: Efficiency

 FSquaDRA is implemented as a single-
threaded Java program

– not really optimized

 We ran experiments on a commodity laptop 
(2.9 GHz Intel Core i7, 8GB RAM)

– 15,10 hours to load hashes into memory

– 64,41 hours to compute similarity score for all app 
pairs

 On average 6700 app pairs per second
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Evaluation: Effectiveness

 Metrics:

– False Positives? For apps FSquaDRA considers 
repackaged, are they actually repackaged?

– False Negatives? For apps FSquaDRA considers 
different, are they really not repackaged?

 Approaches:

– analyze FSquaDRA on a dataset of repackaged apps

– compare FSquaDRA metrics with the state-of-the-art tools 

 Problems:

– no public dataset with repackaged apps

– only one public tool: AndroGuard
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Effectiveness: Evaluation Setup

 AndroGuard – open-source tool by A. Desnos:
– computes code-based similarity metric

– slow (65 sec to compare an app pair on average)

– does not produce symmetric values

 We use average score of (A,B) and (B,A) as the 
similarity score for AndroGuard (ags)

 For each selected bin: 
– randomly picked 100 app pairs with different 

certificates and 100 app pairs with the same 
certificate; 

– calculated their AndroGuard similarity score (ags)

– compared with FSquaDRA similarity score (fss)
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Effectiveness: Plagiarizing Results

(different certificates, fss>0)

13

Correlation: 0.7919

Difference (fss-ags):

-mean: -0.0412

-st. dev.: 0.1862

-median: -0.0480

Red: line of best fit

Blue: LOWESS 

(locally weighted 

scatterplot
smoothing line) 



Effectiveness: Rebranding Results

(same certificates, fss>0)
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Correlation: 0.5807

Difference (fss-ags):

-mean: -0.2761

-st. dev.: 0.2704

-median: -0.2518

Red: line of best fit

Blue: LOWESS 

(locally weighted 

scatterplot
smoothing line) 



FSquaDRA: Features

 The first solution detecting repackaged apps based on resource 
files

 Our resource-based similarity score is highly correlated with the 
code-based similarity score of AndroGuard (0.79 for plagiarizing, 
0.58 for rebranding)

 Faster than any known competitor

– DNADroid by J. Crussell et al. (ESORICS 2012) - 0.012 app pair/sec

• PDG subgraph isomorphism

• Hadoop MapReduce framework with a server and 3 desktops 

– Juxtapp by S. Hanna et al. (DIMVA 2012) - 49.4 app pair/sec

• k-grams of opcodes  hashing  feature vector  Jaccard distance

• Intel Xeon CPU (8 cores) , 8GB of RAM

– Our approach - 6700 app pair/sec 

 Open-source *
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FSquaDRA: Future Work

 The proposed solution is not sustainable:

– attackers can change a bit in all files in apk

– adversaries can add a lot of new resources to 
decrease the similarity score

– libraries containing resources may influence the 
similarity score

 No clear values for false positive and false negative 
scores

– absence of publicly available dataset

– almost all already developed tools (except 
AndroGuard) are not available
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THANK YOU
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