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Abstract—Many state-of-art mobile application testing frame-
works (e.g., Dynodroid [1], EvoDroid [2]) enjoy Emma [3] or
other code coverage libraries to measure the coverage achieved.
The underlying assumption for these frameworks is availability
of the app source code. Yet, application markets and security
researchers face the need to test third-party mobile applications
in the absence of the source code. There exists a number of
frameworks both for manual and automated test generation that
address this challenge. However, these frameworks often do not
provide any statistics on the code coverage achieved, or provide
coarse-grained ones like a number of activities or methods
covered. At the same time, given two test reports generated by
different frameworks, there is no way to understand which one
achieved better coverage if the reported metrics were different
(or no coverage results were provided). To address these issues
we designed a framework called BBOXTESTER that is able to
generate code coverage reports and produce uniform coverage
metrics in testing without the source code. Security researchers
can automatically execute applications exploiting current state-
of-art tools, and use the results of our framework to assess if
the security-critical code was covered by the tests. In this paper
we report on design and implementation of BBOXTESTER and
assess its efficiency and effectiveness.

I. INTRODUCTION

The mobile application area is booming. Today there are
more than 1 million of third-party applications in Google Play1

and more than 1 million apps in Apple AppStore2 markets –
and these are only two (though major) players among mobile
app markets. In the last several years the ubiquitousness of
mobile devices made them a primary target for adversaries.
This has forced big application markets to verify apps before
publishing them for users. Yet, the developers submit only
final application packages for verification [4], [5]. Thus, these
untrusted third-party packages for Google’s and Apple’s vet-
ting systems are essentially black boxes. Therefore, techniques
for automatic test generation and execution that can uncover
malicious or buggy behaviour are in high demand [6], [23].

The peculiarities of the Android platform (e.g., no central
entry point in applications, an event-based model of app de-
velopment, high dependency on system events and user input,
etc.) make the programs written for this platform complicated
for black box testing approaches. Despite the growing number
of frameworks and tools for black box manual (Robotium [7],
Espresso [8], etc.) and automated (Google Monkey [9], Dyn-
odroid [1], PUMA [10], Brahmastra [11], A3E [12], to name
just a few) test generation and execution, this area is still in
its early development.

1http://www.appbrain.com/stats/number-of-android-apps
2https://www.apple.com/au/ipod-touch/from-the-app-store/

The accompanying challenge for the black box test cases
development is the problem of discovering and measuring the
code coverage of the tests. Without understanding what code
parts are covered it is difficult to estimate when test generation
and execution could be finished. The coverage challenge is es-
pecially acute for security testing. While test suite effectiveness
for quality assurance can be evaluated based on metrics other
than coverage [13], dynamic detection of malware that hides
malicious behaviour or behavioural evaluation of app similarity
require special attention to the code coverage [14], [15], [16].

However, even logging which methods have been executed
during a run is not a trivial task when app sources are not
available. Successful implementations to fulfil this task in
Android involve byte-code instrumentation [17] or operating
system modification [15]. Measuring other code coverage
metrics is also a tough task. Current implementations of
app testing systems either work on open-source applications
relying on existing tools, such as Emma [3], to measure code
coverage (e.g., [18], [2]), or operate on instrumented binaries
(for example, [12], [19], [14], [20]). At the same time, in
the latter case the coverage metrics are usually coarse-grained
(e.g., the percentage of shown activities or methods invoked),
while the former approach cannot be used in a truly black
box environment. Given the discrepancies in code coverage
metrics used in the existing black box testing frameworks,
it is not trivial for a practitioner to decide which automated
testing framework to choose for testing, and how to select test
generation strategies based on the time budget available [21].

We address these issues by designing a framework for
code coverage analysis. Our framework, called BBOXTESTER,
generates coverage reports for further analysis in a black box
manner, i.e., having no access to the sources of an app. Our
main contributions made in the scope of this work can be
summarised as follows:

• We designed and implemented BBOXTESTER – a
framework that reports what methods, classes and
packages are executed during the testing without the
need for source code of the app. Our framework can
combine the data obtained during several consecutive
runs and produce a cumulative coverage report.

• Our tool measures code coverage metrics (% of basic
blocks covered, % of method calls and % classes)
without the app source code. It can be used to as-
sess code coverage attained during manual testing or
achived by automatic tesing systems.

• BBOXTESTER allows a tester to specify the moment
when to start and finish collection of coverage infor-



mation. It contains an exception logging mechanism
and thus can be also used for bugs detection. We
release BBOXTESTER as open source3 to drive further
research in this area.

• To show that our tool can be easily integrated with
testing frameworks we implemented 3 automated
testing engines and assessed their effectiveness with
BBOXTESTER on a set of real applications. The
engines implement 3 simple strategies for automated
testing relying on randomly generated input sequences
produced by Google Monkey [9]. Our results for
code coverage achieved by these engines are quite
interesting. For instance, we show that, given the same
time budget available, it is better to try several runs
of automated testing on smaller input sequences (1000
events) than 1 or 2 runs with larger input sequences
(10000 events). This conclusion contrasts approaches
of some state-of-art testing tools that consider only
single runs with sufficiently big number of input
events (e.g., [22]).

• We studied the bugs detected and recorded by BBOX-
TESTER during the evaluation. In our experiments
we located 15 different bugs in 13 applications. The
analysis shows that even very simplistic automated
testing strategies can be very useful in bugs discovery.

The rest of the paper is organised as follows. We intro-
duce some Android details relevant for understanding BBOX-
TESTER in Sec. II, overview the design of BBOXTESTER
in Sec. III and its implementation in Sec. IV. We introduce
the methodology and app dataset selected for BBOXTESTER
evaluation in Sec. V, and summarise the evaluation results in
Sec. VI. We look at the bugs discovered during evaluation in
Sec. VII, and discuss the limitations and future extensions of
our work in Sec. VIII. Finally, we overview the related work
in Sec. IX, and conclude with Sec. X.

II. ANDROID APP BACKGROUND

Android applications are distributed in the form of apk
files. An apk file is a zip archive of app resources that
has a predefined structure. It usually contains one or more
.dex files, an AndroidManifest.xml file, META-INF
directory, and several other inclusions with native libraries,
resources and assets files.

Most of Android apps are programmed in Java. Java code
is compiled into .class files and then transformed into
the custom Dalvik bytecode (using the dx tool [25]) that is
distributed in the form of dex files. The file format limits
the number of method references inside a single dex file to
65K. Yet, some complex apps or those that extensively use
different libraries may sometimes reach this limit. To cope
with this problem developers use different techniques to reduce
the number of method references inside a dex file, e.g., they
merge several methods into one, process dex files with code
optimizers, which remove unused routines, etc. Google also
proposed a solution for dealing with this problem – developers
can divide methods into several dex files and use dynamic
class loading to load additional functionality at runtime.

3https://github.com/zyrikby/BBoxTester

AndroidManifest.xml is an xml file that describes
components which constitute an Android app, application
parameters, and its privileges in the system. Additionally, the
name of an instrumentation class, which allows to monitor
interactions of the system with the application under test (AUT
for short), is also declared here.

The META-INF folder contains data related to the code
signing process. Each Android application must be crypto-
graphically signed to be installed. Usually, an app is signed
with developer’s self-signed certificate. This certificate is used
for assurance that the code of the original application and
its updates come from the same place, and to establish trust
relationships between apps of the same developer. If something
is modified in an Android package the signature will become
invalid and this app will not be installed on a device.

A. Emma

Emma [3] is an open-source utility for measuring and
reporting the code coverage in testing of Java applications,
and it is now also included in the Android SDK. Emma
supports coverage reports at the class, method, line and basic
block levels. The core coverage unit is a basic block. All other
coverage metrics are derivatives from the ones obtained at the
basic block level.

For Java applications Emma supports 2 instrumentation
modes: the on-the-fly mode that uses a special class loader
to instrument classes during the application execution, and
the offline mode that instruments all classes in advance.
Then Emma is used to generate a coverage report after the
application testing is over.

However, due to the peculiarities of the Android platform,
Emma can only instrument Android apps in the offline mode.
The standard procedure for that is the following: all .class
files obtained after the compilation of Java source code are
instrumented with Emma, and then transformed into Dalvik
executables. There is no built-in functionality that allows
developers to instrument the Dalvik bytecode directly.

B. Monkey

The Android SDK includes the UI/Application Exerciser
Monkey tool [9], or simply Monkey, which is able to generate
pseudo-random user actions and feed them in an AUT. It
can be used as a standalone tool for the stress testing, or
alternatively, be integrated as the trigger of the events in the
more advanced systems, which can analyse the results of the
Monkey execution. We use Monkey in BBOXTESTER to run
a simplistic automated testing.

III. FRAMEWORK OVERVIEW

BBOXTESTER is a framework that allows testers to track
what code has been executed during testing and to measure
fine-grained code coverage metrics of AUTs without access to
the source code of the apps. It does not depend on any specific
software installed on the mobile device and can be used in
functional testing of Android apps. Our framework instruments
an application and feeds it to a testing system. This system
runs the app and, when the tests are done, BBOXTESTER

2



APK

apktool

Decompiled

APK

Instrumemtation

process

Instrumented

APK

Signed&Aligned

Instrumented

APK

d2j-apk-sign

zipalign

Fig. 1. Instrumenter workflow

generates a code coverage report based on the data obtained
during application’s execution.

Our implementation (in Python) relies on a number of
existing well-known tools, such as apktool [26], dex2jar [27]
and Emma [3], dx [25], zipalign [28], adb [29], and Mon-
key [9]. However, the modular architecture of our framework
allows to substitute the external tools used with their equiva-
lents (e.g., Emma to JaCoCo [30], or dex2jar to dare [31]).

In our current implementation we leverage Emma as it is
more commonly used in the Android community. The usage of
Emma allows us to compare our results with the ones already
obtained by other researchers, who also usually rely on Emma.
Additionally, the capabilities of this tool, including its ability
to merge code coverage results or to filter out results for some
classes (e.g., filter out classes related to advertising libraries),
are very useful for researchers and practitioners.

BBOXTESTER has three main components: Instrumenter,
Executor and Reporter. Instrumenter is responsible for the
instrumentation of an application and allows us to measure
code coverage of the app without its source code. The Execu-
tor component runs the instrumented application on a device
and extracts runtime information obtained during the testing.
Reporter uses the data produced during the instrumentation
and execution phases to create code coverage and bug reports
(if any bugs were found by BBOXTESTER during the testing).

Our approach does not require neither modification of the
firmware nor phone rooting; only instrumentation of the app to
be tested is needed (described in Sec. IV). Developer options
must be enabled on the phone to allow BBOXTESTER to
interact with an AUT via adb. Additionally, as we modify
an app package during the instrumentation, we sign it with a
new certificate. This can be a limitation for testing of some
apps, e.g., those that check for being repackaged [24] verifying
the certificate during execution. We will further discuss this
limitation in Sec. VIII.

IV. DESIGN AND IMPLEMENTATION

In the following subsections we describe design and im-
plementation details of the main components of our system.

A. Instrumenter

Instrumenter is the main component of BBOXTESTER.
Figure 1 provides an overview of the Instrumenter workflow
during the instrumentation of an application. Using apktool,
we decompile an apk and extract AndroidManifest.xml
and the .dex files. After instrumentation, the app is compiled
back with the same tool into an apk file, which is then signed
with our certificate and aligned with the zipalign tool.

The instrumentation process is presented in Figure 2.
Instrumenter distinguishes 3 types of files inside the decom-
piled .apk file: the .dex files, AndroidManifest.xml
and, finally, resource files.

As Emma cannot instrument the Dalvik bytecode directly,
we first transform .dex files into Java files. Thus, as the
first step, Instrumenter retrieves from the decompiled apk
all files with the .dex extension, and processes them using
the dex2jar utility [27], which transforms the Dalvik bytecode
into the Java bytecode. The Java bytecode (in the form of
.jar files) is then instrumented using the Emma tool [3].

After the instrumentation, we recompile the instru-
mented Java files back to .dex files with the standard
dx utility [25]. We compile the main classes.jar file,
which corresponds to the classes.dex file, together
with emma_device.jar (to enable Emma’s code cover-
age functionality) and our special instrumentation class file
EmmaInstrumentation.class. All other files contain-
ing code are compiled to .dex without additional dependen-
cies (because all necessary dependencies are already in the
main code file).

Our instrumentation class EmmaInstrumentation is
used to track all interactions of the AUT with the
rest of the system. We implement it extending the
android.app.Instrumentation class [32]. When the
instrumentation is enabled, this class is initialized before other
application components. This class dynamically registers a
special broadcast receiver responsible for the invocation of the
coverage report generation routine and test finishing. In our
system, the event of test finishing and report generation is fired
by the Executor component (described in the following sub-
section). Additionally, EmmaInstrumentation intercepts
and logs the exceptions thrown in the AUT. Together with the
context information (also collected by BBOXTESTER) these
data provide a valuable source of information about the bugs
in the application.

The instrumentation class must be registered in the
AndroidManifest.xml file to be recognised by the sys-
tem. Thus BBOXTESTER adds to the manifest a special instru-
mentation tag with the appropriate attribute values (the name
attribute specifies the full name of the instrumentation class,
and targetPackage defines the package name of the AUT).
So as the instrumentation class stores runtime information
(runtime coverage data and bug reports) on device’s external
storage, the AUT requires the appropriate permission to be
able to write there. During the instrumentation of the manifest
file this information is also added.

During the implementation of our framework, we found
out that emma_device.jar contains a set of non-java
resources required for proper operation of Emma on the
Android platform. At the same time, the dx utility ignores
these resource files. To overcome this limitation, we extract
the required files and add them directly to the final .apk file.

B. Executor

After an app is instrumented, it is ready for execution on a
device. Executor facilitates testing process of the instrumented
app on a device. This component installs an application, starts
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its execution, finishes the run, downloads the results, and
uninstalls the app. Between the start and finish events the tester
may run her own testing strategies (e.g., the ones proposed in
[1], [12], [33], [2]) or may explore the app manually.

During start of the instrumented app, Executor takes
some parameters passed as intent extras to our de-
veloped EmmaInstrumentation class. The parameter
reportFolder specifies the path on the device to store the
coverage results and exceptions descriptions (if they occurred
during the analysis). The parameter proceedOnError
defines if the analysis of the app should proceed in
case an uncaught exception has been detected, while
generateCoverageReportOnError sets if runtime
code coverage data should be generated in this case (coverage
reports based on the data may help to locate the error).

The analyst can stop the testing and generate a final report
at any convenient time. All data obtained during the run,
including the exception description, runtime coverage reports
obtained on exceptions and in the end of the run are stored
into the report folder. After the analysis is finished, Executor
downloads this directory locally on a computer.

C. Reporter

Reporter heavily relies on the functionality provided by
Emma. To build code coverage reports Emma uses two types
of files: .em files containing metadata information obtained
during the instrumentation of the Java code, and .ec files
comprising runtime coverage data. BBOXTESTER generates
one coverage.em file during the instrumentation phase. At
the same time, during app execution one or several .ec files4

may be generated. BBOXTESTER also leverages Emma’s
ability to merge information from several runtime files to
produce cumulative code coverage reports.

BBOXTESTER reports on the coverage metrics collected
by Emma at the class, method, basic block and line levels,
and marks executed code parts. Unfortunately, full debug
information is absent in compiled apps, thus, coverage at the

4There can be one final runtime coverage report and/or several reports
generated when errors occur.

line level is currently missing in our reports. Moreover, for the
same reason, the differentiation which code parts have been
executed during the testing can be done only at the level of
methods and up. In the future work we plan to overcome these
limitations.

V. EVALUATION METHODOLOGY

The BBOXTESTER evaluation follows two main goals:

• discover how effective and efficient BBOXTESTER is
for measuring code coverage in testing third-party apk
files,

• investigate and compare several strategies for auto-
mated code exploration to explore the best approaches
for black box testing and to set the ground for future
comparison of automated testing frameworks.

More details on these goals and the evaluation setting
follow.

Evaluation of simple code exploration strategies. Google
provides the Monkey tool [9] for pseudo-random input events
generation that can be useful in automated testing of third-
party apps. Moreover, many state-of-art automated testing
tools, such as EvoDroid [2], PUMA [10], Dynodroid [1],
SwiftHand [33], etc., use Monkey as the baseline to measure
improvements in code coverage or bug detection. While these
tools can be very effective, they might not be as efficient
as Monkey, or they might not be as easy to use for an
average developer as Monkey, which is already integrated in
the Android SDK. Our hypothesis is that simple automated
code-base exploration strategies, such as sequences of pseudo-
random events generated by Monkey, can still be useful for app
testing, and we use BBOXTESTER to test this hypothesis. As
the measures of usefulness we use the achieved code coverage
and the number of discovered bugs in applications (these are
the standard approaches in the state of art [1], [12], [11]).

To validate our assumption we implemented automated
testing engines implementing 3 simple black box testing strate-
gies and assess them with BBOXTESTER. The first strategy
(further denoted as mo for brevity) uses only the Monkey
tool, which generates a sequence of pseudo-random UI input
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events. Monkey does not wait for the results of the events, thus,
allowing a tester to inject thousands of actions in a short period
of time. The sequence is generated based on a seed value
that can be specified using an optional parameter. Additionally,
the number of pseudo-random events can also be defined. For
each selected number of events (1000, 2000, 3000, 5000, and
10000) we performed 10 experiments. We used a pre-specified
seed value to have the ability to repeat experiments with the
same input parameters. Notice, that we were still not able to
repeat the system state across experiments; thus, sometimes
the results of experiments with the same input parameters can
be different. In each experiment we used a fixed throttle value
(period of time between two successive events) equal 50 ms.

The second strategy, abbreviated ma, runs only the main
activity of an app. This activity is invoked when a user clicks
on the app icon. Routines of the main activity are often used to
start other components (e.g., long running services) and, thus,
it supposedly contains and invokes a large portion of the code.
This consideration justifies launching only the main activity as
an automated testing strategy, for example, if the time budget
is very limited. We set out to test this conjecture.

The third testing strategy, called mi, generates explicit (for
activities and services) and implicit or explicit (for broadcast
receivers) intents to invoke app components declared in the
AndroidManifest.xml file, trying to launch all available
app components. Implicit intents are not tried for activities,
because this action usually calls either system components or
other apps, not always the AUT, and services, because Google
prohibits the usage of implicit intents to start services [34].
With this strategy we tried to observe if the code coverage
achieved by the main activity can be improved/complemented
by launching other available app components.

Dataset of apps for testing. To evaluate the simple
strategies described above, we would like to compare their
results with some state-of-art automated testing/input gener-
ation frameworks. We have chosen A3E [12], Dynodroid [1]
and SwiftHand [33], because the code coverage in comparison
with Monkey and the original app files used for testing were
available. Therefore, we treat the three sets of apps reported
in the respective papers as our dataset for BBOXTESTER
evaluation.

The first dataset has been provided by the developers of
the A3E tool [12]. It consists of 31 apps. The second dataset
is based on the one used for the Dynodroid [1] validation5.
We extracted the source code of 52 applications used for
assessment of this tool, compiled them and used as the second
dataset. The third dataset is based on the apps selected for
the SwiftHand [33] tool validation. Unfortunately, the original
apk files used for SwiftHand validation were not available for
our experiments6; only instrumented versions of app packages
were provided with the tool. To reconstruct the dataset we
manually decompiled the instrumented apks and obtained
package names and versions of apps used for the validation.
Based on this information, we explored F-Droid and personal
webpages of the applications in order to obtain the versions
used in SwiftHand’s experimental setup. Out of 10 apps used

5Available at http://pag-www.gtisc.gatech.edu/dynodroid/data/ at the time
of writing.

6Personal communication with the authors.

TABLE I. NUMBER OF APPS IN THE DATASETS, NUMBER OF
SUCCESSFULLY INSTRUMENTED APPLICATIONS AND TIME TAKEN FOR THE

INSTRUMENTATION.

Dataset # apps # apps Instrumentation
instrumented time, s

A3E 31 9 702
Dynodroid 52 45 612
SwiftHand 8 6 100
TOTAL 91 60 1414

in the original paper we managed to find 6 apk files with the
same version, and 3 app source code of the specified version.
Out of these 3 apps we managed to build 2. The third app
contains deprecated methods and cannot be built for newer
API versions.

VI. EVALUATION RESULTS

a) Effectiveness and efficiency of BBoxTester: We exe-
cuted our instrumentation engine on all applications from the
chosen datasets. Table I summarises the results of the instru-
mentation phase. From the A3E dataset, our tool successfully
instrumented 9 out of 31 apps and failed to instrument 22
apps. All instrumentation errors were caused by the third-
party tools used in the instrumentation procedure. Specifically,
20 applications caused an exception in the dx utility, and 2
applications were not processed correctly by the zipalign tool.
It took 702 seconds to instrument this dataset.

In the Dynodroid dataset BBOXTESTER was able to in-
strument 45 out of 52 applications in 612 seconds. The other
7 applications7 caused the same exception in the dx utility.
Finally, from the SwiftHand dataset, 6 out of 8 apps were
instrumented, and 2 apps8 raised an exception in the dx utility.
The time taken to instrument this dataset is 100 seconds.
Notice that for all successfully instrumented apps we were
able to execute test runs.

Our framework relies on a number of external open tools
that process the code differently. Due to the discrepancies in
the operation of these tools, not all applications were success-
fully instrumented. In Section VIII we discuss the failures in
instrumentation in more details. As for efficiency, we can see
the time taken for app instrumentation is negligible comparing
to the actual time of app testing. Moreover, the apps need
to be instrumented only once for all testing runs. Thus, this
offline processing is not important for efficiency. For the online
overhead of code coverage logging, we can rely on Emma
numbers that report to cause 5-20% of runtime overhead [3].
Overall, we can conclude that efficiency of BBOXTESTER is
acceptable, and the bottleneck for its effectiveness is the quality
of third-party tools used in the framework for instrumentation.

b) Strategies evaluation: Figure 3 summarises the ex-
periment results for 10 runs per each input events number
(1000, 2000, 3000, 5000 and 10000) chosen for Monkey
strategy. It shows that the average code coverage (in basic
blocks) slightly grows with more events generated (data from
our full dataset).

Figure 4 demonstrates how some simple strategies explored
perform in terms of basic blocks coverage on our full dataset.

7The K-9 Mail application was in both A3E and Dynodroid datasets
8The org.liberty.android.fantastischmemo app was in both

the Dynodroid and SwiftHand datasets
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TABLE II. SUMMARY ON NUMBERS OF EXPERIMENTS THAT DID NOT
GENERATE COVERAGE REPORTS (IN A SINGLE RUN; NOT IN ALL 10 RUNS).

1000 2000 3000 5000 10000
A3E 21 20 23 21 25
Dynodroid 38 51 52 64 68
SwiftHand 13 15 18 20 19
Missing total 72 86 93 105 112

Experiments total 600 600 600 600 600

Summary statistics are given in Table III. In this table we also
report the total number or apps that failed during all runs of
Monkey (listed as # of N/A) for a set of events. In Section VII
we give more details about these crashes and overview the app
bugs that we encountered.

Interestingly, from Figure 4 and Table III we can see that
cumulative coverage on 1000 Monkey events can be better
than cumulative coverage attained by Monkey on 10000 events.
This can be explained by a bigger chance that app crashes
due to some internal bugs in a 10000 events run than a 1000
events run. The chance of unsuccessful runs on 10000 events
is significantly higher then on 1000 (see Table II for details).

Thus, we can conclude that more events with less runs can
be less optimal strategy for automated testing, if the goal is
to increase the code coverage (e.g., in the security testing to
detect malware, when more behaviours need to be uncovered),
taking into account the time budget available and the increased
chances for apps to crash in longer executions. If a security
analyst is interested in increased code coverage, she should
try more runs on shorter input sequences. If the goal is to find
bugs, then bigger input event sequences can be justified.

In the same time, we have found examples of
applications in our data set that have shown much higher
coverage results in some rare runs (1 in 30 approx.).
These are applications: com.gluegadget.hndroid,
com.chmod0.manpages, com.teleca.jamendo,
com.kvance.nectroid, org.smerty.zooborns,
com.templaro.opsiz.aka; all from the Dynodroid
dataset. In additional experiments (100 runs with 1000 events)
we have confirmed that it is possible for Monkey to attain
higher coverage for these applications only occasionally. We
discuss these cases in details in Section VIII.
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Fig. 4. Comparison of coverage for different strategies that we explored:
Monkey with 1000 and 10000 events cumulative and average, and main
activity and main intent triggering (% of basic block covered)

TABLE III. SUMMARY STATISTICS FOR THE CODE COVERAGE FOR THE
INVESTIGATED STRATEGIES (IN % OF BASIC BLOCKS COVERED). FOR THE
mo STRATEGY WE REPORT CUMULATIVE, AVERAGE AND THE BEST RUN

COVERAGE IN 10 EXPERIMENTS.

Monkey strategy Others
Statistics 10000 ev. 1000 ev.

cum. avg. best cum. avg. best ma mi
run run

min 3.49 1.59 3.00 3.49 1.93 3.10 0.20 0.20
1st Qu. 23.45 17.36 20.77 22.17 15.14 18.16 4.11 4.85
Median 40.31 34.81 40.22 45.53 31.90 40.07 12.42 13.44
Mean 44.77 39.25 42.92 45.84 35.58 41.68 19.73 20.57
3rd Qu. 67.55 62.45 64.12 67.95 53.64 62.25 29.55 30.17
max 95.77 94.23 95.77 93.91 92.36 93.57 85.68 85.91
# N/A 6 5 0

Regarding the simpler strategies ma and mi, we can see
from the boxplots and summary statistics that they are not
very effective in achieving good code coverage. The median
coverage for ma is only 12.42% of basic blocks, and for mi
is 13.44%. These strategies can be practically useful only as a
very short preliminary step to actual testing, or in cases when
the app crashes under any random input sequence. As evident
from Table III, these strategies never resulted in consistent app
crashes, unlike Monkey. These two strategies have almost the
same code coverage, with mi resulting in only slightly better
numbers. However, as we will show in the following section,
mi is effective in detecting bugs in apps.

From Table III we can see, somewhat evidently, that
running functional testing with random input only once can
result in underestimation of actual coverage that can be
achieved by the testing system. More effective strategy to
achieve better code coverage is to run several tests and compute
cumulative value. This seems self-evident, however, in most
of the research papers on Android apps testing only single-run
coverage (or its average on several runs) is reported, not the
cumulative coverage.

c) Comparison with A3E coverage: The A3E system
[12] is the only one for which the reported code cover-
age metrics (% of methods covered) is also measured by
BBOXTESTER. In [12] the authors report mean coverage of
36.46% achieved on the full dataset of 31 apps. BBOXTESTER
instrumented 9 of them, and produced coverage statistics for
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7 apps (2 apps generated exceptions). For these 7 apps, mean
cumulative methods coverage produced by BBOXTESTER on
1000 events is 20.28%. This is in line with our expectations
– the exploration by Monkey is not as sophisticated as A3E’s
one. On our full dataset the method coverage mean is 46.68%
(cumulative on 1000 runs by Monkey). However, the apps from
the Dynodroid and SwiftHand datasets are smaller and less
complicated. Therefore, we can expect that A3E coverage on
these apps will also be higher.

d) Comparison with Dynodroid’s Monkey: As a sanity
check we compare the results of Monkey’s coverage reported
for the Dynodroid evaluation in [1] with our Monkey’s cov-
erage in a similar setting. In [1] the authors ran Monkey 3
times with 10000 events and chose the best run. We therefore,
chose the best run in the first 3 for 10000 events. Notice, that
our code coverage measure is basic blocks on binaries, while
Dynodroid reports coverage as source code LOCs. Therefore,
we did not expect equal results, but it was interesting to see
if the results would be similar (strongly correlated) or not.

The correlation coefficient between the data points sets
(the Dynodroid Monkey’s values versus our Monkey’s values)
is 0.45 (values ≥ 0.5 are traditionally interpreted as strong
correlation). Pearson’s product-moment correlation test shows
95% confidence interval for correlation coefficient [0.16, 0.67],
with p-value for null-hypothesis 0.0033. We can interpret these
results as “somewhat” correlated.

Our experiments were conducted in the same setting as
the Dynodroid evaluation, on the same app set, and we used
the same Monkey tool. However, from the data we have we
cannot conclude that the results are quite similar. Thus, given
two automated testing framework reporting code coverage in
different metrics, it is difficult to establish which one actually
provides better coverage. This conclusion reinforces the need
for a toolkit like BBOXTESTER that can compare results of
different testing frameworks using the same coverage metrics.

VII. APPLICATION BUGS DISCOVERED IN TESTING WITH
BBOXTESTER

BBOXTESTER is able to report uncaught exceptions that
were thrown during testing. These errors cause termination of
the app execution, therefore stopping the coverage measure-
ment as well. Table IV summarizes the bugs discovered by
BBOXTESTER during the evaluation experiments.

In total, we have detected 15 bugs in 13 different appli-
cations of our dataset. The bugs were mainly discovered in
activities; however, we also found one bug in an application
component, one bug in a service, and one bug was located in
an unspecified component (in Table IV its type is null). The
analysis shows that both the mo and mi strategies are useful in
bugs discovery. The ma strategy is less efficient in that regard.
Using this strategy, we managed to discover only 2 bugs in the
bbc.mobile.news.ww app. However, the same bugs were
also detected using the mo and mi strategies. Thus, combining
these two strategies can bring additional benefits in terms of
bugs discovery. Notice that the bugs we report were not listed
as detected by Dynodroid [1].

Almost all exceptions detected are general Java exceptions.
At the same time, we detected a custom exception raised in the

package com.irahul.worldclock. As we had access to
the source code of this application, we were able to conclude
that even though the developers throw an exception in the code,
it is not intercepted anywhere in the app. This may be an
evidence that the intended behaviour of the app is to crash in
case of the incorrect input.

Additionally, not all of the experiments generated the
runtime coverage files. In some cases, there was no information
for either “on error” or “on stop” events, what made it impos-
sible to generate code coverage reports for such experiments. It
should be mentioned that these cases were not really rare. For
the mo strategy, 110 out of 450 experiments for A3E dataset,
275 out of 2250 for the Dynodroid dataset, and 85 out of 300
for the SwiftHand dataset did not contain runtime data. We
performed manual analysis of these cases to understand the
cause of these faults. We found out that some exceptions were
not intercepted by the watchdog component that processes
exceptions occurred in an AUT. This forces the application
process to be stopped by the Android OS. The process is
killed with all threads including the one that generates runtime
coverage reports and, thus, the task of generation of a file with
the coverage data is not accomplished.

We repeated some test runs with the same parameters as
in the original test runs in a controlled experiment, observing
their execution with the logcat utility. In this analysis, we
have discovered two scenarios. For 3 apps we were able
to reproduce the errors that caused the app crash, and all
the experiments for the application at hand (50 experiments)
finished without the runtime coverage data when we used
the mo strategy. At the same time, for the ma and mi
strategies applied to the same apps, the runtime coverage
data were successfully generated. This happened for two app
packages (com.rechild.advancedtaskkiller and
cz.romario.opensudoku) in the A3E dataset, and one in
the Dynodroid dataset (com.everysoft.autoanswer).
In the A3E dataset these two applications resulted in 100 ex-
periments conducted without the runtime coverage information
produced. We observed the errors appearing in the log file,
but they were not discovered in the error file produced by our
framework.

For the rest of cases, our repeated experiments finished
successfully. We believe that former unsuccessful runs could
be caused by some specific states of the application itself
or the operating system. These exceptions are raised under
certain conditions and are difficult to reproduce. However,
these crashes were also not logged by our framework, thus,
it is difficult to conclude with certainty what has caused these
exceptions.

VIII. LIMITATIONS AND FUTURE WORK

BBOXTESTER measures only code coverage of Dalvik
code, i.e., it cannot calculate the coverage of native code.
Thus, if an app heavily relies on some functionality imple-
mented in native code, the coverage numbers obtained with
BBOXTESTER may not be reflecting the real code coverage
(including the native code coverage). This is a common
limitation for all tools that mostly target the Dalvik bytecode.

BBOXTESTER relies on a number of external tools, namely
dx, Emma, zipalign, dex2jar and apktool. The retargeting
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TABLE IV. DISCOVERED BUGS: MO - WITH MONKEY STRATEGY; MA - WITH MAIN ACTIVITY STRATEGY; MI - WITH MAIN INTENTS STRATEGY

Package Name Strategy Type Exception
A3E

bbc.mobile.news.ww mo / ma / mi application java.util.MissingResourceException
bbc.mobile.news.ww mo / ma / mi activity java.lang.NullPointerException
com.devuni.flashlight mo activity java.lang.NullPointerException

Dynodroid
com.android.keepass mi activity java.lang.IllegalArgumentException
com.angrydoughnuts.android.alarmclock mo service java.lang.IllegalStateException
com.irahul.worldclock mi activity com.irahul.worldclock.WorldClockException
org.smerty.zooborns mi activity java.lang.NullPointerException
com.teleca.jamendo mi activity java.lang.NullPointerException
com.teleca.jamendo mo activity java.lang.NullPointerException
jp.sblo.pandora.aGrep mo activity java.util.regex.PatternSyntaxException
org.wikipedia mi null java.lang.ClassNotFoundException

SwiftHand
cri.sanity mo activity java.lang.NullPointerException
jp.gr.java conf.hatalab.mnv mi activity java.lang.NullPointerException
net.fercanet.LNM mi activity java.lang.NullPointerException
org.jessies.dalvikexplorer mo activity java.util.MissingResourceException

process from the Dalvik bytecode to the Java bytecode and
then its compilation back to Dalvik may introduce additional
errors, thus, preventing applications from being successfully
instrumented. As we discussed in Section VI, there was a
number of apps that were not instrumented by BBOXTESTER.
The majority of errors were discovered in dx during compila-
tion of the Java instrumented bytecode, more precisely, the
instrumentation of the Java bytecode performed by Emma
later prevented the dx tool from successful compilation of
the Java instrumented bytecode. Similar results were also
reported by other Android researchers. For instance, Bartel et
al. [35] managed to compile successfully 33 out of 39 apps
with instrumented Java bytecode. Some developers deliberately
design their applications to cause crashes in decompilation
tools such as dex2jar [36]. This also influences on the correct
operation of our framework.

One potential solution is to use components that produce
less errors. For instance, the Dare [31] retargeter can be
used instead of dex2jar, and the JaCoCo [30] code coverage
tool can be used instead of Emma. However, we believe it
will be more practical to develop a new framework that will
work directly on the Dalvik bytecode level. This will prevent
the system from using retargeting tools and compilers, thus,
eliminating two components that caused the majority of errors.
This is even more important in the light of the upcoming
change of the dx compiler to Jack & Jill [37], the future
versions of which will not necessary rely on .class files.
We leave this as a future work.

During our experiments with the Monkey tool we observed
that for some apps in random experiments the code coverage
values were significantly higher than in the rest of experiments.
This is explained by presence of some code in the apps that
is triggered rarely and its invocation is not connected with
the UI events generated by the Monkey tool. This triggering
may be caused by the following events: a) generated by the
OS itself (for instance, quite often the subscribed broadcast
CONNECTIVITY_CHANGE is fired when connectivity details
changed); b) subscribed by the application itself (e.g., alarms
or sensor listeners); c) invoked by other applications (for in-
stance, through an implicit intent). While the first and partially
the second cases are tried to be addressed by the tools like
Dynodroid [1], the third is still in its early developments, only
partially addressed in [38]. Our tool can help in measuring the

effectiveness of the future developments in these areas.

BBOXTESTER can be further improved in several as-
pects. During the experiments we observed inability of our
framework to capture all exceptions thrown in AUTs. To
capture exceptions we rely on the functionality provided by
the Android framework. Thus, the inability to intercept all
exceptions is not the limitation of our tool but the one of
the Android OS. In any case, currently we are investigating
this issue to further improve BBOXTESTER. Another direction
of our future research is mapping of covered code parts to
decompiled source code. This future extension of our system
is of particular our interest because it will allow us to observe
dead code and perform its analysis.

IX. RELATED WORK

Given that BBOXTESTER is a system to measure code
coverage obtained in testing that we used to evaluate some
simple automated testing strategies, our work falls in the
category known as systems for automated mobile app testing.

A. White-box testing approaches

We classify testing techniques that require the app source
code as white-box. For instance, these are systems that rely
on symbolic and concolic execution, e.g., ACTEVE [39], Java
Path Finder for Android [40], Collider [22].

Other white-box testing approaches examples are systems
that generate test cases and dynamically analyse applications
based on their source code. Some notable works in this area
include EvoDroid [2], Dynodroid [1], and the system proposed
by Avancini and Ceccato for testing app communications [38].

For white-box testing there are already tools for code
coverage monitoring available, such as Emma and JaCoCo.
Our tool will be handy in situations when the source code of
apps is not available, thus when white-box testing approaches
will not be applicable.

B. Grey-box and black-box testing techniques

In the absence of the source code automated testing of
third-party apps can become more tricky. We classify systems
that do not require source code as black-box approaches
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(though, technically most of those are grey-box as they ma-
nipulate with binaries and extract some structural information).
Such systems as SwiftHand [33], A3E [12], Troyd [41], Caiipa
[42], DroidFuzzer [43], PUMA [10], AppDoctor [20], Orbit
[44], and AndroidRipper [21] provide working solutions for
automated testing of mobile apps without source code.

For BBOXTESTER PUMA [10] is the most relevant testing
framework, as it allows to create automatic GUI exercisers
for mobile apps. It incorporates a tool similar to Monkey, for
which the user can define UI exploration strategies; these for
instance can be strategies that we have evaluated in this paper.
PUMA effectively decouples automatic Monkey-based app
exploration from the app properties analysis. Our functionality
for driving automated testing is less developed, as we only
support very simple strategies at the moment. In the same time,
PUMA currently lacks code coverage reporting. Thus, PUMA
and BBOXTESTER can be used in synergy.

Many frameworks, such as CopperDroid [16], PuppetDroid
[14], DroidRacer [45], AppsPlayground [46], DECAF [47],
Brahmastra [11], VanarSena [19], and SmartDroid [48] utilise
application testing as a way to detect malicious or vulnerable
applications. All these systems innovate in the automated
testing without source code. BBOXTESTER has also identified
some bugs in applications under testing, yet bug detection is
not the primary goal of the system. BBOXTESTER is in fact
complimentary to the various strategies to automatically exer-
cise app code and intelligently generate input events proposed
in these works. Our tool can be used as a part of any of these
systems to provide more precise code coverage results, and it
can be used to compare effectiveness of different approaches
on the same code coverage metrics.

Some approaches (Dynodroid, SwiftHand, AppDoctor, Va-
narSena, Collider) use the Monkey tool as a benchmark for
effectiveness, or even gather Monkey’s results as inputs for
their work (the system in [49]). With the data from our
strategies evaluation, we can see that these approaches can
be further improved. For example, Collider compares with
Monkey’s results obtained from 6000 events, as the authors
report stabilisation of code covered. This may be true for
smaller applications, like the ones used in the SwiftHand
dataset. However, we can see from our data that it is not
necessarily the case for larger applications, where many runs
of Monkey, even with a smaller input event sequences, might
be needed to exhibit low-probability input events.

C. Dynodroid, A3E and SwiftHand

The Dynodroid system [1] for automatic input generation
is able to generate a set of relevant input events (UI events,
such as button clicks, and system events, such as broadcast
receiver events and system service events) and system events
that can be consumed by a running app. The system was
evaluated for two aspects: source code coverage with respect
to other input generation approaches (Dynodroid vs. Monkey
vs. manual execution) and discovery of bugs in apps. Source
code coverage (as LOCs) in Dynodroid is obtained from
Emma. The evaluation results (on the apps included into our
dataset) show that Dynodroid and Monkey achieve comparable
coverage but Monkey requires more input events. Our findings
show that using cumulative coverage on shorter runs (1000

events only) can lead to noticeable improvements in coverage
achieved by Monkey.

A3E is a system for systematic exploration of Android
applications built on top of Troyd [12]. The A3E framework
automatically explores the app code on device by injecting
user-like GUI actions and generating callbacks to invoke
activities. The framework follows two strategies: depth-first
exploration that corresponds to systematic user-like exploration
of an app, and targeted exploration that imitates calls of app
activities from other apps and system services. To support
targeted exploration A3E first builds a static activity transition
graph with the help of SCanDroid [50]. Then A3E tries
to exercise all available GUI elements and to cover to all
exportable activities in the graph. The evaluation on 25 real
apps (that we used as a part of our dataset) has reported the
method coverage at 29% with the targeted exploration, and
36% with the depth-first exploration.

SwiftHand is a system for automatically generate test input
sequences for Android apps [33]. One of the main intuitions
behind the approach is that it tries to avoid app restarts
as the most time-expensive operation. SwiftHand learns an
approximate GUI model of the app (that is based on the
application state and the user inputs enabled in it) while
executing the test, and explores yet unvisited paths in this
model. It is also able to reply already covered paths. To enable
this exploration SwiftHand requires binary instrumentation,
just like BBOXTESTER. SwitfHand was evaluated on 10 open
source applications; the branch code coverage ranges from
19.6% to 72.2% for the evaluated apps.

We used the evaluation results reported for these systems to
benchmark BBOXTESTER, however, as we reported in Sec. VI,
it is not possible to conclude which of two testing frameworks
achieves better code coverage unless the same coverage metrics
is used in them. The A3E framework that actually uses a
comparable code coverage metrics achieves better coverage
on 7 apps. As the next step for our work, we plan to integrate
SwiftHand and A3E with BBOXTESTER to enrich them with
more precise code coverage metrics, and to be able to compare
these tools on a bigger dataset.

X. CONCLUSION

Existing approaches to measure code coverage, which is an
important testing effectiveness metrics, in testing frameworks
for Android are either too coarse-grained (e.g, percent of
triggered activities or percent of invoked methods) or fine-
grained but work only if app source code is available. We
presented BBOXTESTER – a framework that measures code
coverage metrics in testing Android applications. Our system
complements automated application testing platforms allowing
them to measure fine-grained code coverage metrics and detect
bugs in applications under a test.

We evaluated our framework on a set of real applications
using 3 simple testing strategies, and we gained some insights
into selection of automated test generation strategy given a
limited time budget. For example, our experiments show that
cumulative coverage is a must for all studies using Monkey as
a benchmark. Our results also demonstrate that even these 3
simple strategies can be useful in bug finding process. Indeed,
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during our experiments with our framework we managed to
locate bugs in 13 different apps out of 60 used for evaluation.
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