
Evaluation of Resource-based App Repackaging
Detection in Android?

Olga Gadyatskaya1, Andra-Lidia Lezza1, and Yury Zhauniarovich2

1 SnT, University of Luxembourg, Luxembourg, Luxembourg
olga.gadyatskaya@uni.lu, andra.lezza.001@student.uni.lu
2 Qatar Computing Research Institute, HBKU, Doha, Qatar

yzhauniarovich@qf.org.qa

Abstract. Android app repackaging threatens the health of application
markets, as repackaged apps, besides stealing revenue for honest devel-
opers, are also a source of malware distribution. Techniques that rely on
visual similarity of Android apps recently emerged as a way to tackle
the repackaging detection problem, as code-based detection techniques
often fail in terms of efficiency, and effectiveness when obfuscation is
applied [19,21]. Among such techniques, the resource-based repackaging
detection approach that compares sets of files included in apks has ar-
guably the best performance [20,17,10]. Yet, this approach has not been
previously validated on a dataset of repackaged apps.
In this paper we report on our evaluation of the approach, and present
substantial improvements to it. Our experiments show that the state-
of-art tools applying this technique rely on too restrictive thresholds.
Indeed, we demonstrate that a very low proportion of identical resource
files in two apps is a reliable evidence for repackaging. Furthermore, we
have shown that the Overlap similarity score performs better than the
Jaccard similarity coefficient used in previous works. By applying ma-
chine learning techniques, we give evidence that considering separately
the included resource file types significantly improves the detection ac-
curacy of the method. Experimenting with a balanced dataset of more
than 2700 app pairs, we show that with our enhancements it is possible
to achieve the F-measure of 0.9919.

Keywords: Android security, repackaging, resource files.

1 Introduction

With more than 1.4 billion active devices and more than 1.6 million of apps
only on the official Google Play market, Android is the dominating mobile OS
today3. Android is an open eco-system, i.e. users can install apps not only from

? The work of Olga Gadyatskaya was supported by the Luxembourg National Research
Fund (C15/IS/10404933/COMMA).

3 According to Gartner http://www.gartner.com/newsroom/id/3169417

http://www.gartner.com/newsroom/id/3169417

Google Play [6]. This openness led to flourishing third-party markets, e.g., with
localized content, or even with stolen apps. Indeed, application repackaging, when
a legitimate app is re-published by adversaries, is polluting Android markets
worldwide. It is a known vector of Android malware distribution [26], and not
even Google Play is immune to this threat [23]. While the recently spotted
Trojans hardly included any useful functionality, users still fell victims to their
lure because familiar icons and names were used by the badware4.

App repackaging detection approaches recently turned to the intuition of vi-
sual similarity between original apps and their plagiarized copies [19,20,15,16,10,17].
Indeed, the users have certain expectations for the “look and feel” of the original
apps, and it might be more challenging for malicious repackagers to change the
GUI design than to insert, modify or remove some code parts [19]. Among these
techniques, arguably the best performance could be achieved by the resource-
based repackaging detection approach that directly compares the “look and feel”
of applications represented by the included images, multimedia, layout and other
files. This approach was adopted by, e.g., the FSquaDRA tool [20], the PlayDrone
system [17], and the APPraiser framework [10]. These tools compute similarity
of two applications based on the number of identical files (resources) included
in both packages proportional to the total number of included files (the Jaccard
similarity score that ranges in [0,1]).

Although a strong correlation of the resource-based similarity score with the
code-based similarity score produced by Androguard [5] was previously reported
[20], and manual validation exercises were positive [17,20,10], a thorough as-
sessment of the resource-based repackaging detection approach effectiveness has
never been done before. Whether it could show reliable results in a practical
setting was an open question.

In this paper we close this gap by empirically evaluating resource-based
repackaging detection in experiments on a dataset including repackaged and
non-repackaged pairs. In particular, we explore the following research questions:
RQ1: Does the resource-based repackaging detection approach work in practice?
Can we identify a definitive threshold for the resource-based similarity score that
separates classes of repackaged and not-repackaged app pairs with tolerable false
positive and false negative rates?
RQ2: Does the effectiveness of the resource-based repackaging detection tool
depend on the similarity metric used (i.e., Jaccard similarity used in [17,20,10])?
If yes, which similarity metric suits better to the problem of the resource-based
repackaging detection?
RQ3: Can we improve the repackaging detection rates with the help of machine
learning algorithms?
RQ4: Can the predictive power be improved if different types of resources will
be considered separately?
RQ5: What types of resources are more or less susceptible to modifications dur-
ing the repackaging process?

4 http://www.welivesecurity.com/2016/02/24/porn-clicker-trojans-google-play-analysis/

2

http://www.welivesecurity.com/2016/02/24/porn-clicker-trojans-google-play-analysis/

Answering these questions, this work makes the following contributions:

– We practically verified that resource-based approaches [20,17,10] can be in-
deed used for detection of repackaged applications. We have found the thresh-
old value 0.0629, which can be further used directly in tools [20,17,10] to
minimize both false positive and false negative errors.

– Our experiments with several similarity scores showed that the Overlap sim-
ilarity score achieves the best performance (F-measure 0.9847), while prior
works [20,17,10] relied on the slightly less efficient Jaccard similarity.

– We experimented with repackaging detection based on individual scores for
distinct resource file types. We used 18 file types as a feature vector, eval-
uated several classifiers with these features and found that effectiveness of
the approach is improved by considering separately different types of files. In
the best case, with the non-optimized Random Forest classifier, we achieved
F-measure of 0.9919 improving the single score-based approach considerably.

– We investigated the susceptibility to modification in repackaging of the indi-
vidual resource file types. Our results show that multimedia files, libraries,
raw resources and images are least frequently changed in repackaging, while
the main dex code file, the manifest file and the compiled resources (e.g.,
strings) are the most frequently changed resource file types.

Our findings underline that resource-based repackaging detection is a practi-
cal enhancement to an on-market triage. To stimulate further investigations and
adoption of the method, we release our system open-source5.

2 Resource-Based Repackaging Detection

Resource files. Resource files are an integral part of any Android application
package (apk). They include graphics, texts, layouts, and multimedia content
that will be presented to the user to provide a unique user experience. Other
types of files in the apk are code files (classes.dex and library files) and the
manifest file. In this paper, we in fact refer to all files composing an apk as
resource files. Resource files are typically numerous (an average apk includes
more than 300 files [20]), thus they can be considered representative for the apk.

Upon package signing by the developer, SHA1 digests of all included resource
files (and other files) are created and stored in the apk within the MANIFEST.MF

file. Later, on the device, the hashes are used to verify the integrity of the files
constituting the package. The Android application signing mechanism, however,
does not protect against integrity violation of the package (repackaging). In mali-
cious repackaging, the adversary strips off the signature of the original developer,
decompiles the app, introduces the required changes (e.g., changes the ad library
identifier to redirect the revenue streams or injects malicious code), rebuilds the
app and signs it again with a new certificate [23].

Resource-based similarity score. The basic intuition behind the resource-
based similarity score, which is ultimately leveraged for repackaging detection

5 The code is available at https://github.com/zyrikby/FSquaDRA2

3

https://github.com/zyrikby/FSquaDRA2

in [10,17,20], is that, in order to maintain the visual similarity of the repackaged
app with the original one, the repackager does not change the resource files at all,
or only modifies a fraction of them. Thus, resource files can be used to pinpoint
visually similar app pairs.

The resource-based similarity score (ressim for short) for a pair of apks is
computed in [20,10,17] by applying the Jaccard similarity coefficient to sets of
resource file hashes. For two apks A and B with file hash sets HA and HB , corre-
spondingly, Jressim(A,B) = |HA ∩HB |/|HA ∪HB |, where Jressim stands for
Jaccard resource similarity score. With this formula, two apps with completely
different sets of files hashes have the Jressim score equal to 0, whereas two apps
with completely identical resources have the Jressim score equal to 1.

The tools utilizing resource-based repackaging detection are FSquaDRA [20],
PlayDrone [17], and APPraiser [10]. FSquaDRA computes the resource-based
similarity score (Jressim) and leverages the fact that hashes of all files are
already included in the apk [20]. For identifying similar apps, APPraiser utilizes
the same Jressim score applied to included files (it computes MD5 hashes of the
files and eliminates common libraries), but it is implemented at the market scale
and more efficiently than FSquaDRA by leveraging the sparseness of data [10].
PlayDrone also applies the Jressim score for detection of similar apps, and
it includes resource file names as features alongside MD5 digests of the files
themselves, and excludes common libraries from consideration [17]. PlayDroid
operates at the Google Play market scale. Evaluation of the approach conducted
with these tools was limited.

Indeed, the reported validation of the resource-based similarity approach is
based on manual experiments with a limited number of apps [20,17,10], and the
strong correlation discovered between the Jressim score and the similarity score
computed by the static analyzer Androguard, which measures the apk similarity
score based on the included method signatures (i.e., the code) [5]. Thus, the
strong correlation of resource-based scores with the code-based ones shown in
[20,17] gives justification that the resource-based similarity detection approach
is valid. Despite strong suggestions from the literature [15,17,16,10] and our
personal communication with mobile security companies that the approach is
applied in practice, the resource-based similarity detection method so far has
not been validated on a sufficiently large dataset.

Moreover, without evaluation on the ground truth (a dataset with known
repackaged and non-repackaged pairs), it is not possible to estimate a threshold
(a value such that all pairs with a higher Jressim score are reliably repackaged,
and with a lower score are probably not repackaged) for the Jressim score that
can then be used by app markets in their triage. For the FSquaDRA tool the
threshold value 0.7 was suggested, but [20] acknowledged that there was no
way to confirm the threshold or adjust it without a repackaged dataset. The
PlayDroid system applies the threshold value 0.8 and reports experiments with
thresholds in range [0.6,1.0]. (however, it includes resource file names as features
in addition to the MD5 hashes of resource files, and excludes common libraries,
so we cannot directly compare these threshold values) [17]. The APPraiser tool

4

relies on the threshold value 0.8, and [10] reported that changing it to 0.7 or
0.9 did not affect the experiments significantly. At the same time, the Jressim
value of 0.7 implies that 70% of files are the same for two apks. Intuitively, much
smaller fraction of identical resource files could already be a sign of repackaging.

Other repackaging detection methods. State-of-art approaches in repack-
aging detection on Android have a strong focus on code similarity (e.g., [25,3,4,9,18,1,11,5,8]).
To achieve scalability, tools leverage a combination of lightweight app finger-
prints (e.g., certificates, package names, method signatures, n-grams of code) for
identifying similar apps (e.g., [7,12]).

Recently, techniques that look at visual application similarity emerged. Dif-
ferently from the resource-based repackaging detection approach evaluated in
this paper, these techniques investigate layout files (e.g., [16]) and activity tran-
sition graphs (e.g. [19,15]) as means to represent the UI behaviour that is difficult
to modify without a good understanding of the code. Among these techniques,
DroidEagle [16] follows the same intuition as resource-based repackaging detec-
tion, and applies perceptual hashing to image files in order to detect similar
pictures. It focuses on representing layout files as tree layout hashes and search-
ing for similar layout structures.

ResDroid [15] utilizes resource files as features for detecting repackaged appli-
cations (e.g., it computes the average number of png files per folder in res/drawable).
The MassVet system [2] follows a hybrid approach, as it relies on both similarity
of UI structures and code similarity.

3 Dataset

We use a dataset of repackaged app pairs received from a fellow research group [11]6.
The dataset contains 2754 apps originally mapped into 1497 repackaged pairs.
This dataset is representative of the piggybacking case: all app pairs in it in-
clude the original benign app and a repackaged version piggybacking malware
(confirmed by VirusTotal7) [11]. Notice that for each repackaged app pair, its
member apps are signed with different certificates.

As a first step to explore the obtained dataset, we applied the FSquaDRA
tool [20] to perform pair-wise comparison of all files. In this experiment, we found
that for 38 apps information about file hashes cannot be extracted by the tool.
Among these 38 apps, 26 apps could not be installed, because they were not cor-
rectly signed: the whole META-INF folder was absent, or this folder was located
in a wrong place (e.g., in theassets folder), or the signature file was missing). We
received the error message Failure [INSTALL PARSE FAILED NO CERTIFICATES]

during installation of these apps. As a security-aware app market would have
discarded these apps anyway, we excluded these apks from consideration.

We were able to install the remaining 12 apps on a device and emulator. 10 of
those were functional only on the device; and 2 failed to run on both device and
emulator. The 12 apps are all malicious applications that install other apps in the

6 https://github.com/serval-snt-uni-lu/Piggybacking
7 https://www.virustotal.com/

5

https://github.com/serval-snt-uni-lu/Piggybacking
https://www.virustotal.com/

Table 1. Summary statistics for evaluation of resource-based repackaging results (the Jressim
scores) on the ground truth

Dataset Statistics Value

Truly repackaged app pairs Min 0.0000
(1371 pairs) 1st Quartile 0.5050

Median 0.7442
3rd Quartile 0.9167

Max 1.0000
Mean 0.6893

Truly non-repackaged app Min 0.0000
pairs (1371 pairs) 1st Quartile 0.0000

Median 0.0000
3rd Quartile 0.0000

Max 0.4218
Mean 0.0022

background and show the same ads at startup. The FSquaDRA tool was unable
to process them because they were misconfigured, so we excluded these apps from
consideration. Overall, 126 repackaged app pairs were excluded from our dataset
(for all 126 pairs at least one app was among the 38 non-processable ones). The
remaining 1371 app pairs constitute for us the truly repackaged pairs dataset.
To evaluate the false negative error rate of the approach, we have computed the
Jressim scores for app pairs in this dataset.

Moreover, in order to evaluate the false positive error rate of the approach,
we created a set of truly non-repackaged pairs by randomly selecting 1371 app
pairs from the dataset, excluding the broken 38 apps. We matched two apps
together only if 3 conditions were satisfied: 1) their pair was not already consid-
ered as truly repackaged, 2) they did not belong to a connected component of
repackaged apps (if apps a and b are a repackaged pair, and apps b and c are a
repackaged pair, then apps a, b and c belong to the same connected component
of repackaged apps), 3) they were signed with different certificates. We computed
the Jressim scores for the selected non-repackaged pairs. Thus, we obtained a
balanced labelled dataset for further experiments consisting of 2742 app pairs of
two kinds: repackaged and non-repackaged. Notice that similarly to the designers
of the original dataset [11], in our experiments we focus on detecting plagiarism
(malicious repackaging), not rebranding (repackaging by the same developer).

4 Resource Similarity Evaluation

In this section we address the RQ1 and empirically evaluate the baseline resource-
based similarity detection approach (the Jressim score) on the ground truth.

Baseline results. To answer RQ1 we started by applying the resource-based
repackaging detection method implemented by the open-source tool FSquaDRA [20]
to our dataset. Table 3 reports the summary statistics for both repackaged and
non-repackaged pairs and it reveals the shape of data. We can see that for the
truly repackaged pairs the Jressim scores are quite high (with mean value 0.6893
and median 0.7442). At the same time, there are still repackaged app pairs that
have 0.0 similarity score. For the truly non-repackaged app pairs the summary

6

Table 2. Accuracy statistics

(a) Jressim accuracy

metrics overview with the

threshold 0.0629

Metrics Value

Accuracy 0.9847
Precision 0.9912

Recall 0.9781
F-measure 0.9845

(b) Androguard metrics

overview with the threshold

0.4330

Metrics Value

Accuracy 0.9581
Precision 0.9764

Recall 0.9441
F-measure 0.9600

(a) (b)

Fig. 1. Icons of apps in a repackaged pair with the Jressim score 0.0

statistics are different. We see that more than 75% of the Jressim scores in this
case are equal to 0. At the same time, some app pairs in this dataset expose
non-zero Jressim scores while being non-repackaged.

We can now compute the value (threshold) that minimizes the false positive
error rate (the number of non-repackaged pairs that will be above the thresh-
old) and false negative error rate (the number of repackaged pairs that will fall
below the threshold) using the the standard 10-fold cross-validation scheme.
For Jaccard similarity, the average threshold in 10-fold cross validation on the
dataset at hand is 0.0629. This threshold might be further used with tools like
FSquaDRA and APPraiser [20,10]. We report the accuracy, precision, recall and
the F-measure for this threshold in Table 2(a).

At the same time, figures reported in Table 3 show that the baseline resource-
based repackaging detection approach produces a number of outliers: some repack-
aged app pairs have low Jressim scores, while some non-repackaged app pairs
have relatively high Jressim scores (significantly higher than the threshold
0.0629). We have looked at these outliers in order to understand the practical
reasons for errors in the approach.

False negatives. Repackaged app pairs with the Jressim score less than
0.0629 are false negatives. There are 29 such pairs (out of 1371); all of them were
present in the original list of repackaged pairs that came with the dataset [11].

Among the 29 false negatives, 7 pairs have the Jressim score equal to 0.0.
We have manually reviewed these apps. 4 pairs are visually similar, while 3
pairs are visually different (for 2 pairs even different functionality). 4 visually
similar pairs have different hashes of the resource files, and the resource files have
been substantially changed in the repackaged apps (new folders were introduced;
images were substituted). Fig. 1 gives an example of icons of a repackaged pair
with Jressim = 0.0. As seen from the figure, the repackagers have produced a
completely new icon that is still recognizable to a user.

7

For the other 22 pairs of repackaged apps with Jressim greater than 0 but
less than 0.0629, the apps in these pairs are visually similar. The large proportion
of these are plagiarized apps translated into a different language. Repackagers
of these apps changed substantially resource files, thus, the approach failed to
classify them correctly.

False positives. 11 non-repackaged pairs are false positives as they have the
Jressim score greater than the threshold 0.0629. We manually inspected these
apps and checked which resources were shared between the apps in these pairs.
We found that the false positives appeared in our results due to usage of the
same libraries for app development. E.g., 3 app pairs were developed using the
Facebook SDK8. These findings show that a prior filtering of resources is useful,
as it will allow to considerably reduce the amount of false positives. Such pruning
can be done automatically, e.g., by removal of the most popular file hashes in
the whole dataset [17,10].

Comparison with Androguard. We applied Androguard [5]9 to our dataset
to measure code-based similarity for both repackaged and non-repackaged pairs.
The threshold that yields the lowest cumulative error for Androguard on our
dataset is 0.4330. Table 2(b) summarizes the accuracy metrics for Androguard

achieved with this threshold. Notice that the threshold value 0.4330 minimizes
the cumulative error on the whole dataset. In the 10-fold cross-validation scheme
the accuracy metrics will be lower.

Tables 2(a) and 2(b) indicate that the resource-based repackaging detec-
tion approach has better effectiveness than the code-based approach. More-
over, resource-based repackaging detection has a much better efficiency. Using
FSquaDRA [20], we ran full pairwise comparison (comparing all app pairs for
apps in the original dataset [11]) in 165 seconds (on a laptop with 2.8 GHz pro-
cessor and 16 GB of RAM). Androguard required more than 10 hours only for
the truly repackaged and non-repackaged pairs. Androguard is inherently slow
on non-repackaged pairs [5], which in practice constitute the vast majority [10].

5 Fine-tuning the Basic Approach

We now analyze how to improve the predictive power of the basic resource-
based repackaging detection approach. In particular, we explore the questions
RQ2 and RQ3 regarding the most suitable similarity metrics and classifier with
the best discriminative power.

To answer these questions we used our dataset and machine learning ap-
proaches. For machine learning tasks we used the scikit-learn library, version
0.17.1 [13]. Additionally to the provided algorithms, we also developed a basic
classifier separating two classes using a threshold obtained by minimizing the
cumulative error (as reported in Sec. 4); to avoid over-fitting this classifier was
further applied only in the 10-fold cross-validation setting.

8 Facebook SDK for Android https://developers.facebook.com/docs/android
9 https://github.com/androguard/androguard

8

https://developers.facebook.com/docs/android
https://github.com/androguard/androguard

Table 3. Predictive power comparison of similarity metrics

Metric Accuracy Precision Recall F-measure

Block 0.9832 0.9891 0.9774 0.9831
Cosine 0.9832 0.9883 0.9781 0.9831
Dice 0.9836 0.9898 0.9774 0.9835
Euclidian 0.7400 0.9020 0.5383 0.6733
Jaccard 0.9847 0.9912 0.9781 0.9845
Generalized Jaccard 0.9836 0.9898 0.9774 0.9835
Generalized Overlap 0.9840 0.9855 0.9825 0.9840
Overlap 0.9847 0.9856 0.9840 0.9847
SimonWhite 0.9836 0.9898 0.9774 0.9835
Tanimoto 0.9829 0.9891 0.9767 0.9827

Exploring Similarity Metrics. In [20,10] the Jaccard similarity metric was
used for the full sets of hashes of resource files in a given pair of apps. In general,
any similarity score applied to sets (multisets) of resource file hashes shows to
which extent one application is similar to another. In this section we explore if
usage of another metrics can improve the discriminative power of the method.
To achieve this goal, we extended the open-source FSquaDRA tool [20] with the
possibility to calculate similarity scores using different metrics. In particular, we
took as a reference the SimMetrics Java library10 and implemented in Python
the metrics that compare lists of objects (sets/multisets). In particular, we im-
plemented the following metrics:
Block (Manhattan) similarity: similarity(a, b) = 1−distance(a, b)/(|a|+|b|),
where distance(a, b) = ||a− b||1 (distance from point a to point b is the sum of
of absolute differences of their Cartesian coordinates).
Cosine similarity: similarity(a, b) = a · b / (||a|| × ||b||), i.e., it measures cosφ
of the angle φ between vectors a and b. Cosine similarity considers cardinality
of elements (number of occurrences).
Sørensen-Dice similarity: similarity(a, b) = 2× |a ∩ b|/(|a|+ |b|).
Euclidean similarity: similarity(a, b) = 1−distance(a, b)/

√
|a|2 + |b|2), where

distance(a, b) = ||a− b|| (distance from point a to point b is Euclidean norm of
the vector a− b).
Jaccard similarity: similarity(a, b) = |a∩ b|/|a∪ b|. This is the Jressim score
used in [20,10].
Generalized Jaccard similarity: follows the same formula as Jaccard simi-
larity, but works over multisets.
Overlap similarity: similarity(a, b) = |a ∩ b|/min(|a|, |b|).
Generalized Overlap similarity: same as the overlap similarity, but works
over multisets.
Simon White similarity: the generalized (quantitative) Sørensen-Dice sim-
ilarity, else called Simon-White coefficient, works over multisets and considers
cardinality of elements.
Tanimoto similarity: is expressed using the cosine similarity formula, but mul-
tiple occurrences of elements are not considered (as it works over sets).

10 https://github.com/Simmetrics

9

https://github.com/Simmetrics

Table 4. Predictive power comparison of classifiers

Classifier Accuracy Precision Recall F-measure

OurClassifier 0.9847 0.9855 0.9840 0.9847
Logistic Regression 0.9799 0.9941 0.9657 0.9796

Linear SVM 0.9814 0.9904 0.9723 0.9812
Decision Tree 0.9756 0.9776 0.9737 0.9755

Random Forest 0.9763 0.9784 0.9745 0.9762
Gradient Boosting 0.9799 0.9840 0.9759 0.9798

We calculated these metrics for all app pairs in our dataset. For each metric,
the average results in 10-fold cross-validation for the basic classifier that discrim-
inates based on the similarity score is reported in Table 3 (same folds partition
was applied for all metrics). The result demonstrate that the Overlap similarity
metric has better accuracy, recall and the F-measure, while the Jaccard similar-
ity metric shows better precision. The F-measure, which harmonically combines
both precision and recall, indicates that generally Overlap similarity is preferable
for the repackaging classification task with our dataset. Both previous studies on
resource-based similarity detection [20,10] relied on the Jaccard similarity score,
however, experiments show that the Overlap metric can achieve better results.
Therefore, in the rest of this paper we rely on this similarity metric.

For the Overlap similarity score (Oressim for short) the average threshold
in 10-fold cross-validation is 0.1188. This threshold should be further used in
resource-based repackaging detection approach with the Overlap similarity score.

Applying classifiers. In order to answer RQ3 and assess which classifiers
have the best discriminative power in our task, we experimented with 5 general-
purpose classifiers: Logistic Regression, Support Vector Machines with a linear
kernel, Decision Tree, Random Forest and Gradient Boosting. In this work we
used the default values of the algorithm parameters, i.e. we skipped the parame-
ter tuning step. Moreover, these classifiers were instantiated with the same initial
state to ensure experiment replicability.

We applied the selected classifiers, including our own, to the dataset using
only one feature – the Overlap similarity score Oressim calculated on all file
hashes. Every classifier was validated in 10-fold cross-validation. Table 4 reports
the average results for all classifiers. We can see that the cumulative error min-
imization classifier (OurClassifier) performs well and shows the best scores for
accuracy, recall and the F-measure. In terms of precision, the Logistic Regression
classifier has shown better results. Thus, in the task of resource-based repackag-
ing detection with a single feature (the Overlap similarity score for all files), the
algorithm classifying app pairs based on the score threshold separating classes
of repackaged and non-repackaged app pairs can be used. At the same time, this
algorithm cannot be generalized when several features are used for classification.

6 Resource Files Analysis and Improved Classification

We now address the research questions RQ4 and RQ5 concerning the explo-
ration of resource file types for fine-tuning repackaging detection.

10

Exploring resource file types. An app package includes different types of
files. It is still an open question whether repackagers generally modify all types
of files, or only some specific types. Therefore, while previously a cumulative
similarity score on all files was used, it might be beneficial to explore different
types of resources separately. We now start to explore RQ4 by dissecting the
files constituting Android packages into different types.

Android documentation specifies resource types that can be included in a
package11. However, during compilation some of them are compiled and placed
into the compiled resource file resources.arsc. As the MANIFEST.MF file only
stores paths to files and the hashes of their contents, it is impossible to com-
pute separate similarity scores for these compiled resources. Operating with the
MANIFEST.MF information, we can only divide files into types based on the com-
mon path prefixes and suffixes. In particular, we divide files based on their
purpose (e.g., audio-video files) and their location (for instance, under the res/

folder). The following resource types (features) are identified:
Location-based file division:

1. manifest: the manifest file (AndroidManifest.xml)
2. main code: main files with the compiled Android code (classesN.dex, where
N is either empty or integer number)

3. resources arsc: compiled resources file
(resources.arsc)

4. libs: files located under lib/ and libs folders
5. assets: files under assets/ directory
6. res all: all files located under res/ folder
7. res raw: files under res/raw/ directory
8. res xml: files located under res/xml/ directory
9. res drawable: files under res/drawables/ folder

10. res menu: files located under res/menu/ directory
11. res layout: layout files under res/layout/ directory
12. res anim: files under res/anim/ folder
13. res color: files in res/color/ directory

Purpose-based file division:

14. native libs: all files with .so extension
15. code general: all files with .so, .bin, .dex and .jar extensions
16. audio video: supported audio and video files12

17. image: all supported image files
18. all xml: all XML files

We extracted the hashes corresponding to the considered types from both
packages in an app pair under consideration, and calculated the Overlap simi-
larity score Oressim separately for every file type. Thus, for each pair we ob-
tained a feature vector with 18 values. The features are not independent: e.g.,

11 http://developer.android.com/guide/topics/resources/

available-resources.html
12 http://developer.android.com/guide/appendix/media-formats.html

11

http://developer.android.com/guide/topics/resources/available-resources.html
http://developer.android.com/guide/topics/resources/available-resources.html
http://developer.android.com/guide/appendix/media-formats.html

Table 5. F-measure dependency on the number of features for the classifiers. Values highlighted
with bold shows best result within a column, with red – best result in a row.

Features Logistic Regression Linear SVM Decision Tree Random Forest Gradient Boosting
Number n/a=0 n/a=-1 n/a=0 n/a=-1 n/a=0 n/a=-1 n/a=0 n/a=-1 n/a=0 n/a=-1

1 0.9733 0.9733 0.9734 0.9734 0.9700 0.9700 0.9712 0.9712 0.9745 0.9745
2 0.9842 0.9834 0.9842 0.9820 0.9803 0.9879 0.9792 0.9872 0.9839 0.9868
3 0.9857 0.9838 0.9857 0.9824 0.9813 0.9883 0.9821 0.9886 0.9857 0.9883
4 0.9860 0.9842 0.9868 0.9831 0.9832 0.9883 0.9850 0.9897 0.9861 0.9901
5 0.9868 0.9842 0.9872 0.9835 0.9832 0.9883 0.9853 0.9908 0.9861 0.9901
6 0.9871 0.9842 0.9872 0.9838 0.9835 0.9883 0.9868 0.9904 0.9857 0.9901
7 0.9871 0.9842 0.9872 0.9842 0.9832 0.9879 0.9882 0.9919 0.9861 0.9901
8 0.9871 0.9842 0.9872 0.9846 0.9831 0.9875 0.9886 0.9908 0.9868 0.9901
9 0.9871 0.9842 0.9872 0.9846 0.9835 0.9872 0.9872 0.9901 0.9868 0.9897

10 0.9871 0.9842 0.9872 0.9846 0.9832 0.9875 0.9879 0.9905 0.9868 0.9897
11 0.9875 0.9842 0.9872 0.9846 0.9832 0.9872 0.9875 0.9908 0.9868 0.9897
12 0.9875 0.9842 0.9872 0.9846 0.9824 0.9872 0.9875 0.9919 0.9865 0.9894
13 0.9875 0.9842 0.9872 0.9842 0.9824 0.9875 0.9890 0.9919 0.9861 0.9897
14 0.9875 0.9842 0.9868 0.9846 0.9824 0.9861 0.9875 0.9919 0.9868 0.9894
15 0.9875 0.9842 0.9868 0.9846 0.9824 0.9857 0.9879 0.9912 0.9858 0.9894
16 0.9875 0.9834 0.9868 0.9842 0.9828 0.9850 0.9872 0.9908 0.9850 0.9890
17 0.9864 0.9831 0.9864 0.9839 0.9820 0.9846 0.9872 0.9908 0.9857 0.9886
18 0.9868 0.9827 0.9864 0.9835 0.9817 0.9858 0.9868 0.9901 0.9846 0.9883

code general includes native libs and main code. However, since the classi-
fiers we chose do not assume feature independence, in contrast to e.g., Näıve
Bayes, we did not put any restrictions on them. After extracting features, we
applied the selected classifiers, excluding our own as it could not be generalized
for multiple features, to the dataset using 10-fold cross-validation.

To discover the optimal set of features that drives better results, we applied
the sequential forward selection (SFS) algorithm [14]. This algorithm starts with
a single feature and sequentially adds the variables with which the classifier
shows the highest score, until the size of the feature space specified by the user
is reached. Once a feature is added, it cannot be removed from the search space.
In our case, we selected the total number of features (18) as the limit. This
approach reports not only if the classification can be improved by considering
separately different types of files, but also if we can reduce the set of features to
be extracted from files, thus, saving time for the feature extraction.

Some apps may lack files of a particular type. The conventional approach
in this case is to assign the similarity score equal to 0 (e.g., this is how the
SimMetrics library works). However, we also experimented with assigning to
such cases a value that is out of the range (-1) to distinguish them.

Table 5 reports the F-measure for all classifiers (the accuracy score shows
similar behavior, thus, we do not provide it here). Several important conclusions
can be drawn from the results. First, it is now evident that if file types are con-
sidered as features, the effectiveness of repackaging detection can be improved.
The Random Forest classifier with a combination of 12 features achieves the
F-measure score of 0.9919, which is considerably better than our classifier op-
erating on the cumulative similarity score (the F-measure 0.9847). Considering
only 2 types of resources (when N/A’s are substituted to -1), the Random Forest
classifier already outperforms our classifier that minimizes the cumulative error.

12

Table 6. Results for different file types in repackaging (on average)

(a) Files modified in repackaging (1 –

files never modified; 0 – always modified)

Average Score Feature

0.9788 audio video
0.9574 res raw
0.9269 images
0.9229 libs
0.9199 native libs
0.9177 assets
0.8202 res drawable
0.7648 res all
0.4840 code general
0.3679 res xml
0.3503 res anim
0.3273 res menu
0.3077 all xml
0.2802 res color
0.2557 res layout
0.1524 resources arsc
0.0934 manifest
0.0773 main code

(b) Same files in non-repackaged pairs (1

– always the same; 0 – never the same)

Average Score Feature

0.0159 res drawable
0.0130 images
0.0118 res all
0.0094 libs
0.0087 native libs
0.0057 res color
0.0045 code general
0.0036 res raw
0.0032 assets
0.0030 all xml
0.0018 res layout

0.0 audio video
0.0 manifest
0.0 res anim
0.0 resources arsc
0.0 res xml
0.0 main code
0.0 res menu

Secondly, the classifiers behave differently depending on how the N/A values
are treated. When we substitute N/A values to 0, Linear SVM and Logistic
Regression classifiers show almost similar scores, outperforming the score of our
custom classifier. At the same time, when N/A are equal to -1, even using a
number of features, those classifiers cannot beat our classifier trained only on a
single feature. At the same time, the Decision Tree algorithm shows the opposite
behavior improving its score when N/A values are substituted to -1. This shows
that classifiers used in resource-based repackaging detection systems should be
selected considering, among all factors, how the N/A values are treated.

Last but not least, Table 5 demonstrates that generally the scores achieved
by the Random Forest and Gradient Boosting algorithms in case when N/A
values are substituted to -1, are better than using the conventional approach
(substitution to 0). Obviously, the absence of files of a particular type is also
a feature and thus, it can improve the predictive power of a classifier, as we
observed in our experiments.

Susceptibility of file types to modification in repackaging. One of
the main questions we would like to answer in this paper is RQ5. Obviously,
to further improve the method for app plagiarism detection based on resource
files, it is important to know which resources are more frequently modified dur-
ing the repackaging process. To answer this question we performed the following
experiment. For every type of files (present in both packages from an app pair)
we calculated the average similarity score using only repackaged pairs from our
dataset. File types with higher such scores are less frequently modified in repack-
aging. Obviously, if in a repackaged app pair the similarity score for some file type
is high, then such files were mostly not modified. The results of this experiment
are presented in Table 6(a).

13

Table 6(a) suggests that multimedia, raw, images, libraries in general, and
native libraries are less frequently changed in the repackaging process. Several
important conclusions can be drawn from this fact. First, despite the fact that
in the recent years several methods were proposed to detect repackaged apps
using resource similarity, it seems that adversaries still do not consider them
as a threat to their business. Thus, the resource files that are not required to
be changed in repackaging are mostly left untouched. Secondly, the mentioned
file types are more difficult to change. Clearly, without special tools it is quite
difficult to edit multimedia files or native libraries. That can also explain why
these file types are mostly left in the original state. These considerations can
improve the resiliency of approaches based on resources similarity comparison.

According to our analysis, dex files, the Android manifest and the compiled
resource files are changed quite often. This observation perfectly agrees with the
repackaging process logic for the piggybacking scenario, which is the case for our
original dataset [11]. If adversaries want to add some malicious functionality,
they change the dex and Android manifest files to add necessary permissions
[22]. There are many tools that can do this automatically for malicious and
benign purposes (e.g., for instrumentation in testing [24]). The file containing
compiled resources is also often modified in repackaging. This file incorporates
information about string resources included in an apk. Evidently, if adversaries
repackage an apk with the purpose of publishing it in other national markets,
they translate the application. Therefore, an additional locale should be added
to string resources, resulting in the compiled resources file change. Secondly, the
adversaries often change ads IDs, which are usually defined within the string
resources.

Table 6(b) reports similarity scores for the different resource files types for
the non-repackaged dataset. This information is also instructive, as it allows
to analyze better the false positives discussed in Sec. 4. Indeed, we see that
developers reuse images (e.g. “like” buttons) and libraries across different apps.

We should mention that besides modification of the files, the score changes if
files of that type are added or removed. Currently, we do not isolate these cases.

7 Discussion

Threats to validity. We evaluated the resource-based repackaging detection
approach on one dataset [11], which was originally collected under assumption
of a lazy adversary who does not change a lot during repackaging. On more
diverse datasets effectiveness of resource-based similarity detection approaches
can be different, and it needs to be further investigated.

The resource-based similarity detection approach is currently not robust
against an attacker who takes care to slightly change all files included in the
original apk. This is not a challenging task, and minor edits can be automated.
However, as we have mentioned in Sec. 4, most of repackaged pairs we failed
to detect were either not visually similar, or visually similar to a user, but not
to a machine. As Fig. 1 shows, repackagers can be very creative in modifying

14

apps so that the main theme is recognizable, while the included images are very
different. Advance AI techniques can be applied to detect such apps, but these
techniques are currently not scalable to the on-market setting.

Yet, though the approach is very accurate on our dataset, which is quite
recent, its robustness against a casual attacker (who just changes the files a
little to modify the hashes) still can be improved, by, e.g., working with percep-
tual hashes or fuzzy hashes of the files (not the hashes included in the original
package). Better understanding which file types are generally not modified in
repackaging (e.g., multimedia, libraries and images) suggests that we can apply
fuzzy hashing techniques only to those types of files.

Efficiency. We have operated in our experiments in a setting with a full
pairwise comparison. This is not actually a scenario applicable to day-to-day
app markets operations. Instead, in a practical set-up, a market expects to com-
pare a relatively small set of recently submitted apps to a very large set of
already known apps [10]. For a set-up like this, an app market can maintain a
database with sorted hashes of already known files (e.g., in a tree-structure) that
is efficiently searchable for hashes from the new apps.

8 Conclusions

In this paper we have practically evaluated the resource-based repackaging de-
tection approach. Our experiments show that this technique is very effective
with outstanding results for accuracy, precision, recall and the F-measure. Fur-
thermore, we improve the existing tools [20,10,17] by suggesting the Overlap
similarity metric to be used with the Random Forest classifier on 12 features.
We have also reported which resource file types are less prone to modification in
repackaging, and which resource files can coincide in non-repackaged pairs. Our
results may be instructive for researchers and practitioners looking into adding
the resource-based repackaging detection approach to their app triage schemes.

References

1. Chen, K., Liu, P., Zhang, Y.: Achieving accuracy and scalability simultaneously in
detecting application clones on Android markets. In: Proc. of ICSE. IEEE/ACM
(2014)

2. Chen, K., Wang, P., Lee, Y., Wang, X., Zhang, N., Huang, H., Zou, W., Liu,
P.: Finding unknown malice in 10 seconds: Mass vetting for new threats at the
Google-Play scale. In: Proc. of USENIX Security Symposium (2015)

3. Crussell, J., Gibler, C., Chen, H.: Attack of the clones: Detecting cloned applica-
tions on Android markets. In: Proc. of ESORICS’12. pp. 37–54 (2012)

4. Crussell, J., Gibler, C., Chen, H.: Scalable semantics-based detection of similar
Android applications. In: Proc. of ESORICS (2013)

5. Desnos, A.: Android: Static analysis using similarity distance. In: Proc. of
HICSS’12. pp. 5394–5403 (2012)

6. Gadyatskaya, O., Massacci, F., Zhauniarovich, Y.: Security in the Firefox OS and
Tizen Mobile Platforms. IEEE Computer 47(6), 57–63 (2014)

15

7. Gonzalez, H., Kadir, A., Stackanova, N., Alzahrani, A., Ghorbani, A.: Exploring
reverse engineering symptoms in Android apps. In: Proc. of EuroSec. ACM (2015)

8. Guan, Q., Huang, H., Luo, W., Zhu, S.: Semantics-based repackaging detection for
mobile apps. In: Proc. of ESSoS. Springer (2016)

9. Hanna, S., Huang, L., Wu, E., Li, S., Chen, C., Song, D.: Juxtapp: a scalable
system for detecting code reuse among Android applications. In: Proc. of DIMVA
(2013)

10. Ishii, Y., Watanabe, T., Akiyama, M., Mori, T.: Clone or relative?: Understanding
the originals of similar Android apps. In: Proc. of IWSPA. ACM (2016)

11. Li, L., Li, D., Bissyandé, T.F., Lo, D., Klein, J., Le Traon, Y.: Ungrafting malicious
code from piggybacked Android apps. Tech. rep., SnT, University of Luxembourg
(2016)

12. Lindorfer, M., Volanis, S., Sisto, A., Neugschwandtner, M., Athanasopoulos, E.,
Maggi, F., Platzer, C., Zanero, S., Ionnidis, S.: AndRadar: Fast discovery of An-
droid applications in alternative markets. In: Proc. of DIMVA. Springer (2014)

13. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)

14. Saeys, Y., Inza, I.n., Larrañaga, P.: A Review of Feature Selection Techniques in
Bioinformatics. Bioinformatics 23(19), 2507–2517 (September 2007)

15. Shao, Y., Luo, X., Qian, C., Zhu, P., .Zhang, L.: Towards a scalable resource-driven
approach for detecting repackaged Android applications. In: Proc. of ACSAC. ACM
(2014)

16. Sun, M., Li, M., Lui, J.: DroidEagle: Seamless detection of visually similar Android
apps. In: Proc. of WiSec. ACM (2015)

17. Viennot, N., Garcia, ., Nieh, J.: A measurement study of Google Play. In: Proc. of
SIGMETRICS. ACM (2014)

18. Wang, H., Guo, Y., Ma, Z., Chen, X.: WuKong: A scalable and accurate two-phase
approach to Android app clone detection. In: Proc. of ISSTA. ACM (2015)

19. Zhang, F., Huang, H., Zhu, S., Wu, D., Liu, P.: ViewDroid: Towards obfuscation-
resilient mobile application repackaging detection. In: Proc. of WiSec. ACM (2014)

20. Zhauniarovich, Y., Gadyatskaya, O., Crispo, B., Spina, F.L., Moser, E.:
FSquaDRA: Fast detection of repackaged applications. In: Proc. of DBSec. LNCS,
vol. 8566, pp. 130–145. Springer (2014)

21. Zhauniarovich, Y., Ahmad, M., Gadyatskaya, O., Crispo, B., Massacci, F.: Sta-
DynA: Addressing the Problem of Dynamic Code Updates in the Security Analysis
of Android Applications. In: Proc. of CODASPY (2015)

22. Zhauniarovich, Y., Gadyatskaya, O.: Small changes, big changes: An updated view
on the Android permission system. In: Proc. of RAID. Springer (2016)

23. Zhauniarovich, Y., Gadyatskaya, O., Crispo, B.: Demo: Enabling trusted stores for
Android. In: Proc. of CCS. pp. 1345–1348. ACM (2013)

24. Zhauniarovich, Y., Philippov, A., Gadyatskaya, O., Crispo, B., Massacci, F.: To-
wards Black Box Testing of Android Apps. In: Proc. of Software Assurance Work-
shop at ARES. pp. 501–510 (2015)

25. Zhou, W., Zhou, Y., Jiang, X., Ning, P.: Detecting repackaged smartphone appli-
cations in third-party android marketplaces. In: Proc. of CODASPY (2012)

26. Zhou, Y., Jiang, X.: Dissecting Android malware: Characterization and evolution.
In: Proc. of S&P. IEEE (2012)

16

	Evaluation of Resource-based App Repackaging Detection in Android

