
Visualization of Actionable Knowledge to Mitigate DRDoS Attacks
Michael Aupetit∗ Yury Zhauniarovich† Giorgos Vasiliadis‡ Marc Dacier§ Yazan Boshmaf¶

Qatar Computing Research Institute, HBKU

ABSTRACT

Distributed Reflective Denial of Service attacks (DRDoS) represent
an ever growing security threat. These attacks are characterized by
spoofed UDP traffic that is sent to genuine machines, called ampli-
fiers, whose response to the spoofed IP, i.e. the victim machine, is
amplified and could be 500 times larger in size than the originating
request. In this paper, we provide a method and a tool for Internet
Service Providers (ISPs) to assess and visualize the amount of traf-
fic that enters and leaves their network in case it contains innocent
amplifiers. We show that amplified traffic usually goes undetected
and can consume a significant bandwidth, even when a small num-
ber of amplifiers is present. The tool also enables ISPs to simulate
various rule-based mitigation strategies and estimate their impact,
based on real-world data obtained from amplification honeypots.

Index Terms: C.2.0 [Computer Systems Organization]: Computer
Communication Networks—Security and Protection; K.6.m [Com-
puting Milieux]: Miscellaneous—Security

1 INTRODUCTION

Distributed Denial of Service (DDoS) attacks are not a new phe-
nomenon. In November 2, 1999, the CERT Coordination Center in-
vited 30 security experts to address what was considered at that time
as a new category of attack tools, which used distributed systems to
run concurrent denial of service attacks. One of the outcomes of
that event was a report containing precise information about pro-
tecting systems from the attacks launched by these tools, detecting
the use of the tools, and responding to the attacks [17]. That same
report also provided precise recommendations for various specific
groups within the Internet community, including managers, system
administrators, ISPs, and incident response teams, informing them
which actions they should take in order to protect themselves.

More than 15 years later, not only we still observe the very same
DDoS attacks, albeit implemented using new tools, but also a resur-
gence and a dramatic increase of the number and strength of these
attacks. One explanation of this new wave of DDoS attacks lies
with the recent rise of the so-called Distributed Reflective Denial-
of-Service (DRDoS) attacks. In these attacks, an adversary sends a
request with a spoofed IP address of the victim to a genuine server
that runs a vulnerable protocol. The server in turn replies to the
victim with a much larger response. Using these valid protocols,
attackers can flood the victim with up to 500 times the amount of
traffic they initially sent to the genuine servers, now referred to as
amplifiers.

Despite the daily occurrence of DDoS attacks, most of the In-
ternet users are unaware of their existences. Indeed, it is quite rare
nowadays to learn that a major web server was unreachable because

∗e-mail: maupetit@qf.org.qa
†e-mail:yzhauniarovich@qf.org.qa
‡e-mail:gvasileiadis@qf.org.qa
§e-mail:mdacier@qf.org.qa
¶e-mail:yboshmaf@qf.org.qa

of a DDoS attack launched against it. The reason lies not only
in infrastructure improvements, such as large replication of servers
in geographically diverse environments, but also in the availability
of several commercial offerings capable of reacting to the attacks,
when they are launched against high-stack targets. While such com-
mercial solutions are effective in practice, they are expensive and
available only to those websites that can afford them. Moreover, as
shown by several recent studies [18, 31], today’s DRDoS attacks
target a large population of the Internet users who do not bene-
fit from existing, commercial defenses. Consequently, the Internet
traffic is routinely polluted with large quantities of junk traffic con-
tributing to thousands of daily DRDoS attacks.

In this paper, we present a visualization tool that helps decision
makers within an ISP to understand how much resources they waste
due to DRDoS attacks. The tool also simulates the efficiency and
the implications of various mitigation strategies that are available to
ISPs. To achieve that, we combine the knowledge of ongoing DR-
DoS attacks obtained from amplification honeypots, such as Amp-
Pot [31], with the knowledge of the amount of possible amplifiers
existing within a given ISP, as provided, for instance, by the Censys
project [22]. We explore new visualization paradigms to extrapolate
the junk traffic traversing an ISP’s external gateway. We propose
these visualizations in a way that helps the ISP to find a mitigation
strategy, such as access-control rules, that are practical and would
result in the highest benefit in terms of preventing or limiting junk
traffic that is attributed to DRDoS attacks.

The structure of this paper is as follows. In Section 2, we cover
related work and position this work with respect to the novelty of
our contribution. In Section 3, we present the overall architecture
of the system we have built to collect, enrich, analyze, and make
the data available for visualization purposes. Section 4 describes
the data we use in the paper. In Section 5, we describe the contribu-
tions we have made in terms of visualization, how they have been
designed, and how they address the problem of estimating the gain
of different DRDoS mitigation strategies in terms of saving network
bandwidth. In Section 6, we present two use case scenarios show-
ing how the interface can be used with real world data obtained
from our ISP partner. Finally, Section 7 concludes the paper.

2 RELATED WORK

Honeypot and DDoS Analysis. In late 1999, CERT published a
report to warn the Internet community about the threat of DDoS
attacks, and offered concrete preventive actions to mitigate the
threat [17]. A few months later, the Internet was hit by the first,
large DDoS attack [26], followed by many others years after. Since
then, researchers have analyzed some of the tools used to launch
DDoS attacks [20, 19, 21], measured their impact on the Inter-
net [37, 28, 36, 16, 34], and provided a number of defensive ap-
proaches [32]. Eventually, these research efforts led to a number of
effective and reliable anti-DDoS products that are provided either
as independent appliances or as cloud-based services.

Recently, the interest in defending against DDoS attacks has in-
creased due to the proliferation of DRDoS attacks. In order to pro-
vide an open environment for researchers to study this new type
of DDoS attacks, Christian Rossow started the AmpPot project in
2014 [31, 40, 41], providing a honeypot that acts as a usable ampli-
fier. Rossow et al. used the data collected by AmpPot deployments

978-1-5090-1605-1/16/$31.00 c©2016 IEEE

across the world to measure, analyse, and show new patterns about
the victims of DRDoS attacks, which have been confirmed by other
independent studies [18, 23, 15, 30].

Some of the interesting findings about DRDoS attacks are that
they are perpetrated against gamers, as a form of cheating or for
financial gain, and that a large fraction of victims are end-users who
cannot afford existing, commercial anti-DDoS services.
Security Analytics Platforms. Besides enterprise security analyt-
ics platforms [12, 6, 11, 8, 10], many open-source solutions have
been developed supporting a wide spectrum of security-based anal-
ysis [9, 2]. For example, Apache Metron [2], the successor of Cisco
OpenSOC [9], is a platform that offers a full-stack software infras-
tructure to analyze and detect network intrusions, zero-day attacks,
and advanced persistent threats.

One mutual approach followed by the exiting security analyt-
ics platforms is to provide a robust framework based on prominent
technologies, including machine learning and graph analytics, to
detect today’s security threats. This framework typically involves a
set of tools to capture network traffic and collect network telemetry,
to enrich the obtained data and index in external datastores. In this
work, we leverage the same concepts to build our QaCIP platform,
which we describe in detail in Section 3.
Visualization. A wide range of visualization techniques have been
applied to support visual analysis of network security data [33, 39,
35]. All these approaches introduce and provide novel visualiza-
tion techniques specifically for security-related data. According
to the recent survey by Shiravi et al. [43], security visualization
can be divided into five use-case classes: host/server monitoring
with Glyphs [24], internal/external monitoring with parallel coordi-
nates [46], port activity visualization with scatter plots [35], attack
patterns with colour maps [27], and routing behavior summaries
with histograms [44]. However, we are not aware of any visual-
ization techniques that are dedicated for supporting the design of
network traffic filtering rules for cyber security applications.

To support visual large data exploration, Murray et al. proposed
a query language, called Kaleidoquery, to make database queries
using graphical user interfaces [38]. This language, along with a
supporting tool, maps SQL statements to graphical elements, pro-
viding a visual data navigation technique to select or filter out a
subset of the data using graphical representation. Although Kalei-
doquery assists the user in understanding the structure of a filter, it
does not support visualization of the effects of the produced queries
on the amount of queried data. Decision trees can be also used to
represent data filtering [45, 25], where a tree represents a filter that
is applied to the data passing from the root to the leaves. While
decision trees are useful to visualize the data filtered on each level,
they are evaluated across the whole tree, which hides the effect of
the filter on a particular level in the tree.

To address the shortcomings of Kaleidoquery, Huo et al. pro-
posed KMVQL, a query language in which an interactive Karnaugh
table is used to express boolean queries and to visualize their re-
sults [29]. In KMVQL, the table occupies all the space to show all
possible binary attribute combinations to choose from. In network
security data, however, it is likely to have a large number of multi-
level attribute, which makes KMVQL inefficient as the size of a
Karnaugh table is exponential in the number of binary attributes. In
this work, we propose a new metaphor to support visual traffic filter
definition that is tailored to large-scale cyber security applications.

3 ARCHITECTURE

In order to collect, enrich, analyze and make network security data
available for visualization purposes, we have developed a cyber se-
curity platform, called QaCIP, which facilitates DRDoS attack anal-
ysis. Its architecture is illustrated in Figure 1 and described in de-
tails below.

Apache

Kafka

Apache

Storm
Elasticsearch

Visualization

Platform

ISP

AmpPot

QaCIP
Online

Offline

Figure 1: QaCIP analysis platform for DRDoS activities.

3.1 Amplification Honeypots
The QaCIP platform ingests data collected and streamed by ampli-
fication honeypots that are deployed by ISPs. This is depicted by
the “ISP AmpPot” component in Figure 1. From an ISP standpoint,
these honeypots are a valuable source of information for detecting
network scanners and amplification attacks [31]. In particular, the
honeypots pretend to run services known to be vulnerable to ampli-
fication attacks, such as DNS or NTP, so that when they are scanned
and exploited by real attackers, the ISP can collect useful informa-
tion to better understand the intrinsics of amplification attacks and
the motivations of the attackers.

Unlike traditional honeypots, amplification honeypots can only
be used to analyze data related to the victims, not the attackers.
This is the case because these honeypots are not the target of the
attack, and the traffic they receive is forged and has the spoofed
IP of the victim. This peculiarity allows us to use the collected
data to protect ISP networks from the excessive bandwidth incurred
by the participation of their innocent client vulnerable servers in
amplification attacks.

The main idea behind ISP-driven DRDoS protection is that only
attackers, who scan ISP networks to find vulnerable servers, will
contact ISP-deployed amplification honeypots. These attackers also
know about other, real vulnerable servers in the network, but ISPs
cannot simply block traffic to vulnerable servers, as this may harm
users making legitimate requests. Instead, an ISP can analyse the
data collected by amplification honeypots, and then construct and
enforce network access control rules to block the traffic from vul-
nerable servers to the victims, effectively suppressing the amplifi-
cation while not blocking the service.

In our setup, we used AmpPot [31] as an amplification honeypot.
Unfortunately, the default AmpPot implementation is not designed
for high-volume traffic with real-time log streaming. In particular,
the original implementation has several traffic limiting strategies
that are used to reduce the amount of stored data. Moreover, the
implementation stores the collected data in a database file. This
makes the original AmpPot suitable for offline data analysis, but it
falls short when integrated in a stream processing pipeline for real-
time network data analytics that provides the big picture of network
operation. This renders the original AmpPot implementation un-
suitable for mitigating ongoing DRDoS attacks.

To overcome these limitations, we modified AmpPot as follows.
First, we disabled all request limiting mechanisms so that an ISP is
able to inspect data related to all requests coming to the honeypot.
Second, we implemented a mechanism to send logs of incoming re-
quests in near real-time to QaCIP analysis platform, as described in
Section 3.2. These modifications allows us to see the full picture of
ongoing attacks and take the appropriate actions to mitigate them.

3.2 QaCIP Analysis Platform
To analyze the data collected and streamed by AmpPot instances,
we have designed a scalable, centralized architecture called QaCIP.
As shown in Figure 1, the architecture of QaCIP consists of three
key components. First, a reliable data aggregator that is able to
collect and stream data from several AmpPot instances. Second,

2016 IEEE SYMPOSIUM ON VISUALIZATION FOR CYBER SECURITY (VIZSEC)

a real-time processing engine responsible for parsing the raw data,
enriching them with contextual metadata and parceling the result
into messages of a unified format. Third, an external datastore that
stores and indexes the structured messages, which can be easily ex-
ported for visualization. The key advantage of all three components
is that they can easily scale and cope with the increased amount of
data received, simply by adding more hardware resources. Below
we provide more details about these components.

All incoming raw logs are collected using Apache Kafka [1],
which acts as the message broker in QaCIP. In particular, the raw
log records from the deployed AmpPot instances are published di-
rectly in Apache Kafka. To balance the load, the incoming raw log
records are stored in different partitions, which leads to a higher
throughput. When publishing a log record, Kafka deterministically
maps the record to a partition based on the hash of the key, which in
our case is derived from the source IP address. Each raw log record
contains several attributes extracted from the network packet, such
as the IP and UDP header fields, in addition to a timestamp that
is added explicitly by the AmpPot instance at the time of captur-
ing. The timestamp allows us to provide an accurate analysis even
in cases of communication latencies or delayed processing due to
increased utilization.

The collected raw logs are retrieved and processed at real-time
using Apache Storm [3], which uses bolts to easily scale-in/out.
The bolts perform discrete processing actions, which in our case
include: (i) the parsing of the raw data into structured messages
of attribute-value pairs, (ii) the enrichment with contextual infor-
mation, and (iii) the export to an external datastore. QaCIP’s data
model consists of JSON messages, which define the physical inter-
pretation of data. So, the parsing bolt is responsible for creating a
new JSON message that contains the corresponding data of each in-
coming log record. We mainly use basic types to represent a single
value (e.g., booleans, integers, floating-point, epoch times, strings,
and IP addresses), and array types for bundled values (e.g., sets and
tables). Each newly created JSON message is then passed to the
next bolt, which enriches the message with contextual information.
For instance, using IP address it is possible to add geo-location in-
formation and the ASN, which IP belongs to. This allows us to
provide a human-understandable network view of the raw data, and
be able to efficiently answer popular operational queries, such as
which cities or countries are under heavy attack. The enriched
JSON messages are fed to the last bolt of our topology that is re-
sponsible for exporting them to the external datastore. The three
bolts are connected sequentially, and form a topology pipeline that
is executed independently for each incoming log record, in parallel.
Parallelism can be easily increased by creating the required number
of threads for each bolt.

A major design decision is how to group the incoming log
records and pass it from one bolt to the next one. Since our pro-
cessing is stateless, the naive way is to shuffle the incoming log
records in a round-robin fashion. This will allow a harmonized
and equal load balance across different threads of the correspond-
ing bolts. However, it will result in poor performance when en-
riching incoming records with the metadata sets, primarily due to
excess random accesses. As metadata sets are queried based on spe-
cific attributes, such as the source IP address for the geo-location
information, shuffling the log records to the bolts will result in ran-
dom accesses when querying the metadata sets. To overcome this
overhead, we group the incoming record stream according to the
source IP address, which is used for acquiring the extra contextual
information. This results in higher data locality, as each thread will
process only a specific range of IP addresses, of which the corre-
sponding metadata information will usually reside in the OS file
cache, or even in the CPU cache.

We use Elasticsearch [4] as an external datastore. However, other
JSON-enabled datastores, such as MongoDB, can be used as well.

Table 1: Amplification Constants
Protocol Port Size (bytes) BAF

QOTD 17 9.0 140.3
CHARGEN 19 9.0 358.8
DNS 53 78.1 28.7
NTP 123 16.1 556.9
NETBIOS 137 58.0 3.8
SNMP 161 46.0 6.3
RIPv1 520 32.0 131.21

MSSQL 1434 9.0 252

SSDP 1900 100.9 30.8
SIP 5060, 5061 420.4 60 [42]

We chose Elasticsearch because it is easy scalable and index data
in near real-time, giving us a possibility to analyze the more recent
information. Moreover, Elasticsearch does not require a fixed data-
store schema. That allows us to enrich the data with new contextual
information without retroactive updates.

3.3 Visualization Platform
There are many commercial and open source platforms for data
visualization (e.g., Kibana [7], Grafana [5]). Such platforms al-
low developers to build different types of graphs and analyze data
stored in indexed datastores like Elasticsearch [4]. Unfortunately,
their power is limited if non-trivial data analysis with inference is
required, which is typically the case in cyber security analytics.

To perform visualization and data analysis that are tailored to our
specific task, we developed a custom, offline visualization platform
using R [14] and Shiny [13]. This platform can be used by ISPs
to design traffic filters and network access rules, and retroactively
assess their potential influence.

The visualization platform runs an R webserver that fetches data
from Elasticsearch using the Rcurl library. Currently, we query all
relevant records from Elasticsearch and process them on the web-
server side. This requires the host, which runs the R server, to have
the capacity to cope with the required processing. We plan to use
the rich functionality of Elasticsearch for metric and aggregation
calculations, in order to offload some of the computations from the
R server. The client can be any modern web browser that renders
visualizations produced by the Shiny application, and provides
means for user interactions with the rendered components.

4 DATASET

In order to visualize the potential gain of the designed mitigation
strategies, we need to take into account several factors. First, the
size of the incoming request packets varies for different vulnerable
protocols. Second, every vulnerable protocol has its own ampli-
fication factor. Third, the number of vulnerable servers for every
protocol is different in an ISP network. Having this information, it
is possible to assess the losses of traffic in an ISP network and eval-
uate potential gains, as a result of applying mitigation rules. Our
visualization tool provides an appropriate interface to specify the
corresponding values.

To evaluate the size of request packets for every protocol, we
used one day of honeypot data and measured the average payload
length of incoming packets for every protocol type. Table 1 reports
the corresponding values. Bandwidth Amplification Factor (BAF)
is the ratio of the size of the UDP response to the size of the UDP
request [40]. We note that amplification factor can vary for differ-
ent vulnerable servers, even for the same protocol. For instance,
a response to a NTP-monlist command can return a list of up

1https://www.us-cert.gov/ncas/alerts/TA14-017A
2https://blogs.akamai.com/2015/02/

plxsert-warns-of-ms-sql-reflection-attacks.html

2016 IEEE SYMPOSIUM ON VISUALIZATION FOR CYBER SECURITY (VIZSEC)

https://www.us-cert.gov/ncas/alerts/TA14-017A
https://blogs.akamai.com/2015/02/plxsert-warns-of-ms-sql-reflection-attacks.html
https://blogs.akamai.com/2015/02/plxsert-warns-of-ms-sql-reflection-attacks.html

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Date (March, 2016)

0

100

200

300

400

500

600
R

e
q
u
e
st

s
C

o
u
n
t

(m
ill

io
n
)

Figure 2: Amount of requests received by our modified AmpPot

to 600 client IP addresses. Obviously, if the number of clients is
less, the response will be shorter. As such, the amplification factor
will be lower for this server. Given that there are many vulnera-
ble servers in a network and their responses size vary in time, it
is difficult to infer precise value for this parameter. For the sake
of simplicity, in this paper we use the average values as have been
reported by monitoring big ISP networks [40]. Table 1 reports the
amplification factors used in this work.

In our tool, the number of vulnerable servers for each protocol is
parametrized. Such information may be obtained by the ISP scan-
ning periodically its network in order to identify services vulnerable
to the amplification attacks or by using the outcomes of the Censys
project [22]. As we currently do not have this information, we set
this parameter to 1 for every protocol. However, to estimate roughly
the amount of vulnerable services in a network, the interested reader
is referred to [40].

To obtain real numbers for amplification attacks, we deployed
our amplification honeypot in our organization’s network. For the
visualization, we selected a continuous one-month dataset from
March 1, 2016 to March 31, 2016. Figure 2 shows the number of
requests received per day. As can be seen, the number of incoming
requests has an increasing trend. On average, we received around
290 million requests per day. Thus, our platform deals with a large
amount of data every day, and our choice to rely on the architecture,
which easily scales horizontally, is justified.

5 VISUALISATION DESIGN

In what follows, we describe the interface of our tool, and show how
it can be used to develop DRDoS attacks mitigation strategies. We
propose a new graphical metaphor called VizFilt, which enables the
user to develop filters representing mitigation strategies and evalu-
ate their effectiveness on historical data before online deployment.

5.1 Definitions
Actionable attributes (an ∈ A) are features that can be directly ex-
tracted from each request packet, such as the source IP address, the
source/destination port numbers, and the TTL value. In contrast,
informational attributes refer to the metadata features that are typ-
ically appended after contextual enrichment, such as geolocation
information, reverse DNS-lookup, and as a result, they cannot be
part of filtering rules that are applied at the network level.

A filter F = R1∨R2∨·· ·∨Rn =
∨n

i=1 Ri is a logical disjunction
of n boolean rules. A rule Ri is a conjunction of positive or negative
disjunctions of specific attribute levels, defined by:

Ri =
∧

ak∈ARi

LSk =
∧

ak∈ARi

(nk
∨

j
l j
k),

where ARi ⊆ A is a subset of actionable attributes used in rule Ri,
∨

and
∧

represent boolean algebra operators OR and AND, and LSk is
a logical statement about the kth actionable attribute ak ∈ ARi . LSk
is formed of two parts: a disjunction of level values with li

k the ith
level of the attribute ak, and a parameter nk ∈ {1,¬} which allows
negating (NOT) the disjunction when set to ¬. The user can design
a rule specifying the levels li

k and the parameters nk.

A filter is composed of as many rules as desired. For example:

F(p) = R1∨R2
= (dst portp == [123 OR 17 OR 53]

AND ip24p == NOT [128.232.83.0/24])
OR (src addrp == [123.235.8.9]

AND ttlp == NOT [90 OR 200]
AND ip24p == [24.5.42.0/24])

where in the first rule R1: a1 = dst port, n1 = 1, l1
1 = 123, l2

1 = 17,
l3
1 = 53, a2 = ip24, l1

2 = 128.232.83.0/24 and n2 = ¬ for instance.
An attribute of a packet, which does not appear in a rule, is ig-

nored meaning this attribute can take any level without affecting the
outcome of the rule. If the attributes of a packet p match the logical
definition of F , then F(p) = 1(T RUE) and p is blocked.

Given the fact that each attribute appears only once in a packet,
and its levels are mutually exclusive, we can prove that any possi-
ble packet can be filtered with any such rule, and the filter being a
disjunction of rules allows blocking any set of packets differing or
not by some or all of their actionable attributes.

A blocked request packet p decreases the total bandwidth in an
ISP network by a quantity b(p) = #ampli f iersPortp × SizePortp ×
BAFPortp , where #ampli f iersPortp is the amount of amplifiers in the
network for the protocol identified by the port Portp, SizePortp is the
average size of the request packet payload, BAFPortp is the BAF (see
Section 4). Summing the quantities b(p) for all packets p blocked
by F on a given time window TW , gives the bandwidth recovery
Br(F,TW) enabled by applying F :

Br(F,TW) = ∑
p∈TW

F(p)b(p)

Finally, the gain in bandwidth is computed as g(F,TW) =
Br(F,TW)/Bactual(TW), where Bactual(TW) = ∑p∈TW b(p) is the
actual bandwidth occupied during the time window under focus.

5.2 Anticipated User Requirements
The target user of our system is an analyst working for an ISP trying
to estimate the amount of bandwidth wasted due to the participation
of ISP’s clients in amplification attacks. Thus, the system should
facilitate the following processes to the user: (R1) creation of rules
that maximize the gain due to the blocked traffic; (R2) combination
of several rules into filters; (R3) comparison of different filters; (R4)
assessment of gains on different time ranges; (R5) identification of
regular traffic and (R6) interactivity.

These requirements stem from the following peculiarities of ex-
isting mitigation systems. (R1) The ISP cannot simply block all the
traffic coming to the vulnerable services because they are also used
for benign purposes. For instance, benign clients can use DNS re-
solvers within ISP’s network to resolve DNS names, although the
same resolvers can be also used for amplification attacks. There-
fore, developed rules should be very specific blocking only spoofed
traffic from the victim. At the same time, these fine-grained rules
should supply the best gain. (R2) As uploading rules to network
facilities is a costly operation, it should occur rarely. Therefore, the
system should provide possibilities to combine several rules into a
filter, i.e. a more coarse-grained structure. (R3) The user should
be able to define several filters and have the possibility to evaluate
which one is better depending on traffic conditions. (R4) Various
filters can have different effectiveness on diverse time ranges, thus,
the user interface should facilitate the process of evaluating the gain
on different time windows. (R5&R6) The user does not know in ad-
vance which packets must be blocked. The design of filters’s rules
is an iterative and manual process. It strongly relies on feedback
observing the positive result of decreasing the bandwidth and the
negative side effect of affecting the rest of the (regular) traffic. (R5)
Identifying the regular traffic strongly relies on user knowledge and

2016 IEEE SYMPOSIUM ON VISUALIZATION FOR CYBER SECURITY (VIZSEC)

Figure 3: Overview of the interface structure and illustration of Use Case Scenario 2.

can be supported by both actionable and informational attributes.
Our system should let the user to see the effects on both kinds of
attributes, while applying filters on actionable ones. (R6) In or-
der to ease the building process, the system should be interactive,
displaying the effects of applying a filter instantly after each user
action.

Finally, blocking a packet typically comes at some cost. Ideally,
the system should provide information about the cost of applying
a filter. However, this cost is very difficult to estimate because it
involves many factors. Therefore, our system currently relies on
domain knowledge of the user to estimate this cost.

5.3 Interface
The interface of our platform is shown in Figure 3 (in the sequel, all
symbols refer to this figure and to the user requirements in Section
5.2). The interface is made of two essentially identical panels (P1,
P2), each made of three components: the Time Navigation compo-
nent (TN1, TN2) at the top (R4), the new VizFilt component (VF1,
VF2) at the center (R1, R5), and the Filter Selection component
(FS1, FS2) at the bottom (R2). The left Setting panel (P1) enables
filters edition and evaluation, while the right Display panel (P2) is
only used for comparison to P1 (R3). Any action on a graphical
object takes effect instantly on any linked one (R6).

Time Navigation (TN) The TN components of both panels
are strictly identical in appearance and interactions. They use a
time series graphical representation to display the actual and possi-
bly blocked bandwidth or traffic quantity per time units. Detailed
characteristics about the time windows are displayed at the top of
these components. Horizontal brushing allows the user to select a
time window that automatically takes effect on packets displayed in
both the TN and VF components of the same panel. The two TN
components display both ends of the time windows (TW1, TW2)
selected in the other TN component as vertical blue (TW1) and vi-

olet (TW2) lines for the TN1 and TN2 components respectively.
This enables the comparison between applying the same filter in
different time windows or different filters in the same time window.

A button (B1) is used to switch between Traffic rate (expressed in
Mb/s) and Bandwidth (expressed in MB). When bandwidth is dis-
played (see Figure 4 Left), the graphical metaphor used is a stacked
bar chart with equal-width bars which best encodes an amount of
bandwidth during the corresponding time intervals. When traffic
rate is displayed (see Figure 4 Right), we use a stacked line (area)
chart better expressing the instantaneous nature of the displayed
quantity. In both cases, we use stacked bars or lines to express that
blocked packets are part of a whole set of packets, and we use a
color-code to distinguish which items represent blocked (light grey)
and free (dark grey) packets. In Figure 4 we see the result of another
mode controlled by button B2, which allows switching between top
(C-F) and bottom (D-E) position for displaying the blocked pack-
ets, to ease the reading of the amount of free and blocked packets
respectively, and between count (C-D) and proportion (E-F) for en-
coding the total height. In case of proportions, units are changed to
percent and all bars have equal total height of 100%.

Filter Selection (FS) At the bottom of the interface are the
Filter Selection components (FS1, FS2) made of a set of buttons
and drop-down lists, and a text area displaying a textual description
of the filter displayed in FS2, and of the rule and the filter currently
edited in FS1. The text areas have scroll-bars when the rule or filter
displayed is too long to fit in the assigned space. In FS1, a drop-
down list allows selecting the current rule for editing, and another
allows the user to select the edited filter. Both drop-down lists have
”New” and ”Del” buttons to create or delete rules and filters respec-
tively. In FS2, only the drop-down list to select a filter is present,
which applies only to the components of P2. A button B3 allows
switching the filters between the Setting Panel P1 and Display Panel
P2 together with their respective time windows (TW).

2016 IEEE SYMPOSIUM ON VISUALIZATION FOR CYBER SECURITY (VIZSEC)

Figure 4: Bandwidth scale is displayed with a stacked bar chart (Left
column) and Traffic scale with a stacked line chart (Right column).
Blocked packets (light grey) are displayed in terms of count at the top
(C) or the bottom (D), or in terms of proportion at the bottom (E) or
the top (F) of the stacked bars or lines. (A-B-C) show the result of
the Use Case Scenario 1 in same order as in Figures 5 and 6.

VizFilt (VF) - Structure The new visual metaphor called Viz-
Filt (VF1, VF2) is central to our design. VF1 allows the user to
build a logical rule (Figures 5 and 6) by interacting with the graph-
ical objects based on visual information about the distribution of
attributes’ levels of all the packets in the time window selected in
TN1. We focus on VF1, as VF2 is identical but display-only with
no interactive feature except highlights on hovering.

In VizFilt, the bars a separated in two sets: the actionable at-
tributes are displayed first from the left, then come the informa-
tional attributes as a second group of bars clearly separated from
the former by an empty space. The name of the attribute encoded
by a bar is given on the x-axis. Names of informational attributes
are put between parentheses to emphasize their non-actionable na-
ture. The total height of each bar equals the total bandwidth b(p)
occupied by the packets p ∈ TW observed in the selected time win-
dow TW of the corresponding panel. As each packet takes a specific
level for each of the actionable and informational attributes, the to-
tal height is identical for each attribute, however the share of the
different levels is different from one attribute to another.

When there are more than a hundred of levels for an attribute,
the number of segments in the stacked bar becomes hardly visible
and could be even higher than the number of pixels in a column
so the user could not distinguish between the segments anyway.
As the user is interested in identifying and possibly blocking the
packets bearing the largest amount of bandwidth, only the tallest
segments are of importance. Therefore we consider only the top-K
levels (TK) of each attribute in the given time window, putting in a
supplementary segment all the other levels (OL). The attributes are
assigned a specific hue evenly selected on the hue circle in the HSV
color space, to maximize the contrast between any two attributes.
The last segment (OL) is colored in grey for all the attributes. In or-
der to distinguish the levels within an attribute, the top-K segments
are color-coded with small random variations of the hue, saturation
and value near the dominant hue of their attribute. This color is set
for all the levels in the original dataset to maintain color-codes as-
signed to levels when changing the time window and related top-k
ranking.

VizFilt accounts for packets blocked by a filter, by subsetting

the segments of each bar accordingly. As the amount of bandwidth
occupied by blocked packets in the time window is the same for all
the attributes, we can stack the bars dedicated to blocked packets at
the top of the bars in the blocked-band, and the ones dedicated to
the free packets at the bottom in the free-band. The color-code of
the segments of the bars in both bands is the same and specific to the
levels they represent. We draw a red dashed horizontal line (L0) at
the top of the bars to represent the actual bandwidth before filtering,
and a green horizontal thick line (L1) between the free-band and the
blocked-band that represents the bandwidth after filtering. We fill
in the vertical space between the bars in the blocked and free bands,
with the same light and dark grey colors used in the TN components
to encode blocked and free packets respectively.

When a filter contains more than one rule, the bars of blocked
packets are split horizontally with another thick green line (L2) in
VF1 only. This line is drawn to separate the packets blocked by the
rule currently edited from the other blocked packets. As a filter is a
disjunction of rules, it is possible that some packets are blocked by
several rules at a time. Therefore, we first apply all the other rules of
the filter to get the amount of bandwidth blocked by the filter ignor-
ing the edited rule. Then we apply the edited rule on the remaining
packets not yet blocked, to get the minimum amount the edited rule
effectively contributes to block by itself, so its added-value to the
edited filter. The added-value of the edited filter including all its
rules, is given by g(F,TW) (G1). The specific added-value to F of
the single edited rule Re is defined as (G2):

Br(Re,TW) := Br(F,TW)−Br(F−e,TW)

with F−e =
∨

i 6=e
Ri and Re = Fe. Both these gains (G1,G2) are dis-

played at the top of the VF1 component, but only is the gain G1 of
the displayed filter at the top of VF2. Applying the edited rule after
all other rules in the filter allows building a filter incrementally with
no overlap between the rules, at least on the packets in the current
time window TW1. Note that this distinction (L2) between edited
and other rules of a filter does not exist in VF2 which shows the
result of applying all the rules of the displayed filter (FS2) at once.

VizFilt (VF) - Interactions Hovering over any segment of
the VizFilt component in any panel, highlights its border in white,
and displays a tool tip text giving the name of the level and the
amount of bandwidth occupied by all the packets with this level in
the time window. For OL segments, we display ” N OT HERS ”
where N is the number of levels they aggregate. We also high-
light in light yellow the segments of other bars that contain the
same packets, in proportion of their occupied bandwidth (Figure
5). These hints help the user connect the packets’ information to
external knowledge and decide about blocking them or not.

In the VF1 component, the user can create or remove levels in a
rule by clicking on the segments of actionable bars. Only the seg-
ments of packets blocked by the edited rule and the ones of the free
packets react to clicks in that way. As a click on a segment changes
the edited rule, the updated filter is applied immediately to the pack-
ets in the time window TW1, and the results appear immediately in
VF1 and TN1 to reflect the current state of the edited rule and filter.
We detail below how clicks on segments affect the edited rule:

• A click on a free/blocked segment whose level l is not in
the edited rule Re, adds this level to the rule (Figures 5 A→
B and 6 A→ B) without a prefix/with a NOT prefix, moves
this segment to the blocked/free band and makes its border a
thick black plain border (tbpb)/thick black dashed border and
cross overlaid (tbdbco) to states it is now part of the rule in
a positive/negative disjunction, telling ”l must be blocked if
conditions on other features in Re are met”/”l must not be
blocked whatever the other conditions in Re”.

2016 IEEE SYMPOSIUM ON VISUALIZATION FOR CYBER SECURITY (VIZSEC)

Figure 5: VF1 in Use Case Scenario 1: Building a Filter.

• A click on a free/blocked segment whose attribute is al-
ready in the rule with a NOT prefix/without a prefix (Fig-
ures 5B→ C and 6 B→ C), removes/adds the NOT prefix,
moves all the rule’s segments of this attribute to the blocked
/free band, and add a tbpb/tbdbco to all of them.

• A double-click on a segment removes its level from the
edited rule if ever it was part of it, removes its border and
possibly moves it to the free or blocked area depending on the
result of applying the updated filter.

In all theses cases, all other segments not clicked directly are split
between the newly blocked or freed packets, and the other packets,
and this new blocked or free segment moves to the blocked or free
band respectively.

Figure 6: FS1 in Use Case 1: the textual rule displayed in the text
area correspond to the cases of Figures 4 A-B-C and 5 A-B-C.

When the time window changes, the packets to which applies
the filter may differ from the ones used to build the filter. We keep
visible the levels taking part of the edited rule or filter even if no
packet is blocked, by letting them with a thick and possibly dashed
border and overlaid cross, but with an orange color instead (Figure
5 C). It reminds the user that these levels exist in the corresponding
packets but that not all the conditions of the filter are met for these
packets to be blocked.

6 ANTICIPATED USE CASE SCENARIOS

We propose two use case scenarios of interest to an ISP to illus-
trate our system in a realistic setting based on the data described in
Section 4.

6.1 Use Case 1: Building a Filter

In our first use case scenario, the user aims to use VizFilt to build
a filter. The user builds the filter containing a single rule, resulting
in the views A-B-C of the figures 4 (TN1), 5 (VF1) and 6 (FS1).
In the initial VizFilt metaphor (5A) with an empty rule, the user se-
lects the destination port 123, by clicking the corresponding green
bar (DST PORT), resulting to the creation of the corresponding
rule (6B). At the same time, the full bar has moved to the blocked-
band (top of 5B-C) corresponding to the blocked packets in TW1,
allowing her to see that by blocking this port many packets from
SRC COUNT RY China (pink color) will be blocked as well, which
might not be desirable. The user decides to prevent this by clicking
the blue blocked segments whose SRC IP24 correspond to China
has visible by the light yellow overlay (5B). This will result to
the creation of the rule shown in 6C, in which the SRC IP24 that
should not be blocked, have been added to a boolean NOT expres-
sion. These segments are now in the free-band (bottom) with a cross
overlaid. Part of the previously blocked packets in the DST PORT
attribute are now back into the free-band too as their SRC IP24 at-
tribute matches with the newly unblocked levels, still they appear
as a green bar with an orange border highlighting that the 123 level
belongs to the rule but cannot block these packets.

6.2 Use Case 2: Comparing Different Time Windows

In our second scenario, the user aims to explore if the design of
a filter in some specific time range is effective in other time ranges
(Figure 3). After having detected a spike in the full time range in the
TN1 (not shown), the user brushes a small time range TW1 around
the spike to zoom in (A in TW2). Then, the user builds a filter with
two rules (FS1), that gives good results on TW1 (G1, G2). In order
to evaluate this filter on the full time window, the user can select the
same filter in the right panel (FS2), and verify how it applies on the
larger time range TW2. By doing that, the user can perceive that
the filter designed in TW1, is also efficient to block some spikes of
TW2 (B), but not to block all of them (C, D) so she can decide to
set up a new rule to handle these cases.

7 CONCLUSIONS

DRDoS attacks represent a growing threat. During the last couple
of years, the attacks using this technique achieved an accumula-
tion of 500 Gbit/s of undesired traffic. Due to the distributed na-
ture, the traffic from amplifiers may remain undetected, however,
it consumes a significant portion of the network bandwidth, caus-
ing unnecessary money expenditures. In this paper, we proposed a
method and a tool that allow the ISP to evaluate the harm caused
by innocent participation of its clients in the amplification attacks.
Our developed platform collects the data required to get actionable
knowledge while our custom visualization tool allows an operator
to develop mitigation rules, simulate their appliance, and evaluate
their effectiveness on historical data. We are currently collaborating
with an ISP to evaluate and improve our visualization solution.

2016 IEEE SYMPOSIUM ON VISUALIZATION FOR CYBER SECURITY (VIZSEC)

REFERENCES

[1] Apache Kafka: A High-Throughput Distributed Messaging System.
http://kafka.apache.org/.

[2] Apache Metron: Real-Time Big Data Security. http://metron.
incubator.apache.org.

[3] Apache Storm. http://storm.apache.org/.
[4] Elasticsearch: Search & Analyze Data in Real Time. https://

www.elastic.co/products/elasticsearch.
[5] Grafana 3.1.0 released. http://grafana.org/blog/2016/

07/12/grafana-3-1-released.html.
[6] IBM Security Intelligence with Big Data. http://www-03.ibm.

com/security/solution/intelligence-big-data/.
[7] Kibana: Explore & Visualize Your Data. https://www.

elastic.co/products/kibana.
[8] LogRhythm Security Analytics. https://logrhythm.com/

products/security-analytics/.
[9] OpenSOC: Big Data Security Analytics Framework. http://

opensoc.github.io.
[10] Pravail Security Analytics. https://www.pravail.com.
[11] RSA Security Analytics. http://www.

emc.com/collateral/data-sheet/
security-analytics-overview-ds.pdf.

[12] Securonix Security Analytics Platform. http://www.
securonix.com/security-intelligence/.

[13] Version 0.13.2 released. http://shiny.rstudio.com/.
[14] Version 3.2.3 released. https://www.r-project.org/.
[15] Arbor Networks. DDoS Attacks in the Gaming Indus-

try. https://resources.arbornetworks.com/h/i/
153941358-ddos-attacks-in-the-gaming-industry/,
October 19 2015.

[16] M. H. Bhuyan, D. Bhattacharyya, and J. K. Kalita. An Empirical
Evaluation of Information Metrics for Low-rate and High-rate DDoS
Attack Detection. Pattern Recognition Letters, 51:1–7, 2015.

[17] CERT Coordination Center. Results of the Distributed-systems In-
truder Tools Workshop, year = 1999. Software Engineering Institute.

[18] J. Czyz, M. Kallitsis, M. Gharaibeh, C. Papadopoulos, M. Bailey, and
M. Karir. Taming the 800 Pound Gorilla: The Rise and Decline of
NTP DDoS Attacks. In ACM IMC, 2014.

[19] D. Dittrich. The DoS Project’s ”trinoo” Distributed Denial of
Service Attack Tool. https://staff.washington.edu/
dittrich/misc/trinoo.analysis.txt/, October 21 1999.

[20] D. Dittrich. The “stacheldraht” distributed denial of service at-
tack tool. https://staff.washington.edu/dittrich/
misc/stacheldraht.analysis/, December 31 1999.

[21] D. Dittrich. The ”Tribe Flood Network” Distributed Denial of
Service Attack Tool. https://staff.washington.edu/
dittrich/misc/tfn.analysis/, 1999.

[22] Z. Durumeric, D. Adrian, A. Mirian, M. Bailey, and J. A. Halderman.
A Search Engine Backed by Internet-wide Scanning. In ACM CCS,
2015.

[23] Z. Durumeric, M. Bailey, and J. A. Halderman. An Internet-Wide
View of Internet-Wide Scanning. In USENIX Security, 2014.

[24] R. F. Erbacher, K. L. Walker, and D. A. Frincke. Intrusion and Mis-
use Detection in Large-scale Systems. IEEE Computer Graphics and
Applications, 22(1):38–47, 2002.

[25] K. Gangavarapu, V. Babji, T. Meiner, A. I. Su, and B. M. Good.
Branch: An Interactive, Web-based Tool for Testing Hypotheses and
Developing Predictive Models. Bioinformatics, 32(13):2072–2074,
2016.

[26] L. Garber. Denial-of-Service Attacks Rip the Internet. IEEE Com-
puter, 33(4):12–17, 2000.

[27] L. Girardin. An Eye on Network Intruder-Administrator Shootouts.
In Workshop on Intrusion Detection and Network Monitoring, 1999.

[28] P. Hick, E. Aben, K. Claffy, and J. Polterock. The CAIDA DDoS
Attack 2007 Dataset.

[29] J. Huo and W. B. Cowan. KMVQL: A Graphical User Interface for
Boolean Query Specification and Query Result Visualization. In IEEE
VIS, 2003.

[30] M. Karami and D. McCoy. Understanding the Emerging Threat of

DDoS-as-a-Service. In USENIX LEET, 2013.
[31] L. Krämer, J. Krupp, D. Makita, T. Nishizoe, T. Koide, K. Yoshioka,

and C. Rossow. AmpPot: Monitoring and Defending Against Ampli-
fication DDoS Attacks. In RAID, 2015.

[32] D. Kumar, G. Rao, M. K. Singh, and G. Satyanarayana. A Survey
of Defense Mechanisms countering DDoS Attacks in the Network.
Intl. Journal of Advanced Research in Computer and Communication
Engineering, 2:2599–2606, July 2013.

[33] C. P. Lee, J. Trost, N. Gibbs, R. Beyah, and J. A. Copeland. Vi-
sual Firewall: Real-time Network Security Monitor. In ACM VizSEC,
2005.

[34] Y. Lee and Y. Lee. Toward Scalable Internet Traffic Measurement and
Analysis with Hadoop. ACM SIGCOMM CCR, 43(1):5–13, 2013.

[35] J. McPherson, K.-L. Ma, P. Krystosk, T. Bartoletti, and M. Chris-
tensen. PortVis: A Tool for Port-based Detection of Security Events.
In ACM VizSEC/DMSEC, 2004.

[36] J. Mirkovic and P. Reiher. A Taxonomy of DDoS Attack and DDoS
Defense Mechanisms. ACM SIGCOMM CCR, 34(2):39–53, 2004.

[37] D. Moore, C. Shannon, D. J. Brown, G. M. Voelker, and S. Savage.
Inferring Internet Denial-of-Service Activity. ACM Transactions on
Computer Systems (TOCS), 24(2):115–139, 2006.

[38] N. Murray, N. W. Paton, C. A. Goble, and J. Bryce. Kaleidoquery
– A Flow-based Visual Language and its Evaluation. J. Vis. Lang.
Comput., 11(2):151–189, 2000.

[39] J. Pearlman and P. Rheingans. Visualizing Network Security Events
Using Compound Glyphs from a Service-oriented Perspective. In
IEEE VizSEC, 2007.

[40] C. Rossow. Amplification Hell: Revisiting Network Protocols for
DDoS Abuse. In NDSS, 2014.

[41] F. J. Ryba, M. Orlinski, M. Wählisch, C. Rossow, and T. C. Schmidt.
Amplification and DRDoS Attack Defense – A Survey and New Per-
spectives. arXiv preprint arXiv:1505.07892, 2015.

[42] R. Shankesi, M. AlTurki, R. Sasse, C. A. Gunter, and J. Meseguer.
Model-checking DoS Amplification for VoIP Session Initiation. In
ESORICS, 2009.

[43] H. Shiravi, A. Shiravi, and A. A. Ghorbani. A Survey of Visualization
Systems for Network Security. IEEE Transactions on Visualization
and Computer Graphics, 18(8):1313–1329, Aug 2012.

[44] S. T. Teoh, K. L. Ma, S. F. Wu, and X. Zhao. Case Study: Interactive
Visualization for Internet Security. In IEEE VIS, 2002.

[45] S. van den Elzen and J. J. van Wijk. BaobabView: Interactive Con-
struction and Analysis of Decision Trees. In VAST, 2011.

[46] X. Yin, W. Yurcik, M. Treaster, Y. Li, and K. Lakkaraju. VisFlow-
Connect: Netflow Visualizations of Link Relationships for Security
Situational Awareness. In ACM VizSEC/DMSEC, 2004.

2016 IEEE SYMPOSIUM ON VISUALIZATION FOR CYBER SECURITY (VIZSEC)

http://kafka.apache.org/
http://metron.incubator.apache.org
http://metron.incubator.apache.org
http://storm.apache.org/
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/elasticsearch
http://grafana.org/blog/2016/07/12/grafana-3-1-released.html
http://grafana.org/blog/2016/07/12/grafana-3-1-released.html
http://www-03.ibm.com/security/solution/intelligence-big-data/
http://www-03.ibm.com/security/solution/intelligence-big-data/
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://logrhythm.com/products/security-analytics/
https://logrhythm.com/products/security-analytics/
http://opensoc.github.io
http://opensoc.github.io
https://www.pravail.com
http://www.emc.com/collateral/data-sheet/security-analytics-overview-ds.pdf
http://www.emc.com/collateral/data-sheet/security-analytics-overview-ds.pdf
http://www.emc.com/collateral/data-sheet/security-analytics-overview-ds.pdf
http://www.securonix.com/security-intelligence/
http://www.securonix.com/security-intelligence/
http://shiny.rstudio.com/
https://www.r-project.org/
https://resources.arbornetworks.com/h/i/153941358-ddos-attacks-in-the-gaming-industry/
https://resources.arbornetworks.com/h/i/153941358-ddos-attacks-in-the-gaming-industry/
https://staff.washington.edu/dittrich/misc/trinoo.analysis.txt /
https://staff.washington.edu/dittrich/misc/trinoo.analysis.txt /
https://staff.washington.edu/dittrich/misc/stacheldraht.analysis /
https://staff.washington.edu/dittrich/misc/stacheldraht.analysis /
https://staff.washington.edu/dittrich/misc/tfn.analysis/
https://staff.washington.edu/dittrich/misc/tfn.analysis/

	Introduction
	Related Work
	Architecture
	Amplification Honeypots
	QaCIP Analysis Platform
	Visualization Platform

	Dataset
	Visualisation Design
	Definitions
	Anticipated User Requirements
	Interface

	Anticipated Use Case Scenarios
	Use Case 1: Building a Filter
	Use Case 2: Comparing Different Time Windows

	Conclusions

