An Effective Android Code Coverage Tool

Aleksandr Pilgun Olga Gadyatskaya Stanislav Dashevskyi Yury Zhauniarovich Artsiom Kushniarou
SnT, University of Luxembourg SnT, University of Luxembourg SnT, University of Luxembourg Qatar Computing Research Institute, HBKU SnT, University of Luxembourg
aleksandr.pilgun@uni.lu olga.gadyatskaya@uni.lu stanislav.dashevskyi@uni.lu yzhauniarovich@hbku.edu.ga artsiom.kushniarou@uni.lu

https://github.com/pilgun/acvtool

Context Approach

The deluge of Android apps from third-party developers ACVTool allows to measure and analyze the degree to which the code of a
calls for sophisticated security testing and analysis closed-source Android app is executed during testing, and to collect crash
techniques to inspect suspicious apps without accessing reports occurred during this process. The tool instruments an app and
their source code. Code coverage is an important metric measures code coverage at instruction, method and class granularities.

used in these techniques to evaluate their effectiveness,

and even as a fitness function to help achieving better ACVTool produces detailed coverage reports that are convenient for either
results in evolutionary and fuzzy approaches. visual inspections (html), or automatic processing (xml). Our tool also collects

crash reports that facilitate the analysis of faults within apps.
Existing tools [1-4] for measuring code coverage over

the bytECOde of Android apps have the fO”OWing Element Ratio Cov. Missed Lines Missed Methods Missed Classes
IimitationS' . AndroidLauncherSEUCountry.smali | p— 08.48943% 5 331 1 5 0 1
. AndroidLauncher.smali [] 9.43723% 95 462 2

— coarse granularity [AndroidLauncher: - Bady% | 9 de2 2| B 101

. . . BuildConfig.smali | 0.00000% 1 1 1 1 1 1
- IOW Instrumentation success rate . MyApplication$ TrackerName.smali | 80.64516% 6 31 2 4 0 1
— limited empirical evaluation B MyApplication.smali T 86.11111% 5 36 0 2 0 1

. R%anim.smali | 0.00000% 1 1 | 1 1 |
. SnakeGame.smali 1] 55.55556% 16 36 0 2 0 I
Smali Report ACVTool code coverage report example

.method public static contains(Ljava/lang/String;)Z

.locals 6 K

.param p@, "s" # Ljava/lang/String; DeS|gn

const/4 vl, @xe

invoke-static {}, Lcom/gnsdm/snake/AndroidLauncher$EUCountry Instrumented

move-result-object v3 L— Android Manifest Tl

array-length v4, v3 Ak Apktool |\ EUBIMIGNIENTESY ACVTool |\ EENTISTRSISSIssgRs: apksigner |,

move v2, vi |'| Decompile) Instrument RPN SRR BuildaSign

:goto_0@ Smali Code / V

if-ge v2, v4, :cond_@ APK

aget-object v@, v3, v2

invoke-virtual {ve}, Lcom/gnsdm/snake/AndroidLauncher$EUCoun Offline

move-result-object v5

invoke-virtual {v5, p@}, Ljava/lang/String;->equalsIgnoreCas
move-result v5

if-eqz v5, :cond_1

Online

const/4 vi, exl manual
:cond_0 automatic .
return v1 Test
tcond_1
add-int/1it8 v2, v2, ox1
goto :goto_0
.end method
Evaluation Conclusions
We have extensively tested ACVTool on real-life third party + We offer to Android security testing community a novel tool for
applications. The sample consists of 448 runnable applications black-box code coverage measurement of Android applications.
from F-Droid and 398 randomly selected Google Play applications We have significantly improved the smali instrumentation
targeted to the Android API 22+. technique and consequently our instrumentation success rate is
F-Droid Google Play 96.9%, compared with 36% in Huang et al. [2] and 65% in
Parameter benchmark | benchmark Total Zhauniarovich et al. [4].
Total # selected apps 448 398 846 * ACVTool is an open source tool currently available at
Average apk size 3.1MB 11.1MB 6.8MB https://github.com/pilgun/acvtool.
Instrumented apps 444 (99.1%) 382 (95.9%) 97.6%
Healthy instrumented apps 440 (98.2%) 380 (95.4%) 96.9% R f
Avg. instrumentation time 24.7 sec 49.6 sec 36.2 sec ererences
(tOtﬂl per app) [1] ELLA. 2016. A Tool for Binary Instrumentation of Android Apps, https://github. com/saswatanand/ella.
[2] C. Huang, C. Chiu, C. Lin, and H. Tzeng. 2015. Code Coverage Measurement for Android Dynamic Analysis Tools. In
. . . Proc. of Mobile Services (MS). IEEE, 209-216.
CO“CIUSlon: tOtal ACVTOO' success rate s 969% Wlth average [3]J. Liu, T. Wu, X. Deng, J. Yan, and J. Zhang. 2017. InsDal: A safe and extensible instrumentation tool on Dalvik byte-
H H H code for Android applications. In Proc. of SANER. IEEE, 502-506.
Instrumentation time 36 Seconds on our dataset' [4]Y. Zhauniarovich, A. Philippov, O. Gadyatskaya, B. Crispo, and F. Massacci. 2015. Towards black box testing of
Android apps. In Proc. of SAW at ARES. IEEE, 501-510.

M acR
) | bess e b L
II III ° “ onds Mational de la o

UNIVERSITE DU Luxembc urg HAMAD BIN KHALIFA UNIVERSITY -
LUXEMBOURG

mailto:olga.gadyatskaya@uni.lu
mailto:olga.gadyatskaya@uni.lu
mailto:olga.gadyatskaya@uni.lu
mailto:yzhauniarovich@hbku.edu.qa
mailto:olga.gadyatskaya@uni.lu

