The Influence of Code Coverage Metrics on
Automated Testing Efficiency in Android

Stanislav Dashevskyi Olga Gadyatskaya Aleksandr Pilgun Yury Zhauniarovich
SnT, University of Luxembourg SnT, University of Luxembourg ~ SnT, University of Luxembourg ~ Qatar Computing Research Institute, HBKU
stanislav.dashevskyi@uni.lu olga.gadyatskaya@uni.lu aleksandr.pilgun@uni.lu yzhauniarovich@hbku.edu.qa
Context

Automated testing and dynamic analysis techniques are critical for ensuring the reliability and the security of third-party Android apps.

One of the biggest challenges for these techniques is effective app exploration in the black-box setting. Android apps have many entry points,
and their source code is unavailable for inspection. State-of-the-art tools utilize a wide variety of app exploration strategies that range from
generating random GUI events to systematic exploration of apps models [1], but there is no agreement on the success criteria.

Code coverage is a common metric used to evaluate efficiency of automated testing and dynamic analysis tools [1], and some of these tools
utilize code coverage as a component of a fitness function to guide app exploration and find more bugs [2].

Code coverage exists in many flavors, and there is currently no agreement in the community on which metrics to use in the fitness function.
Are they all the same, or is there a code coverage granularity that works best? We make the first step towards reaching this agreement.

Hypothesis Experiment setting
Combining different Sapienz [3] is a state-of-the-art bug finding tool for Android apps. It relies on Monkey [3] to generate
granularities of code random input events; and applies a genetic algorithm to event sequences. The test selection function

combines code coverage, the number of found bugs, and the size of a test sequence. Sapienz is
designed to utilize activity, method and statement coverage. We set out to evaluate how these metrics
fare against each other in finding bugs.

coverage can be beneficial
for achieving better results
in automated testing of
Android apps.

Activity coverage was computed by Sapienz, and method and instruction coverage were measured with
our own ACVTool (the tool is currently available at https://github.com/pilgun/acvtool).

Experiment 1: Comparing the metrics individually Experiment 2: Evaluating the randomness impact
We randomly selected 500 apps from Google Play and executed We randomly selected 100 apps, and ran Sapienz 5 times for each
them with Sapienz using each coverage metric. app using each coverage metric.

_ Activity g, Method C il Crashes
Coverage metric #Crl;r;iie #;sggy #I;Q;Sh G 7 overage rmetrics P1: 1 run | Ps: 5 runs
— 136 | - Activity coverage 54 (45%) 115 (58%)
ALy adl o = L MR Method coverage | 72 (62%) | 108 (55%)

Instruction 352 555 53 ?5 e Instruction coverage | 65 (55%) 116 (59%)

| Total [555 | 295 | 26 | S 18 | Total [118 | 196 |
Instruction Conclusion: Even in multiple runs, no individual coverage metric was
Conclusion: Different metrics find different bugs. able to find all bugs detected by others.
Experiment 3: 1 run x 3 metrics vs 3 runs x 1 metric Conclusions
For the 100 apps selected for the second experiment, we compute the number of faults Our results show that different code coverage
detected jointly by 3 metrics and the number of faults found by each individual metric in granularities find different bugs, and (given an
3 runs. equal execution time) that a combination of 3
.) 3 runs X 1 metric 8 different granularities will find more bugs than
Statistics 1 run X 3 metrics — : - 7. . T
activity | method [instruction | 4 ., . . any of these metric granularities individually.
Min 0 0 0 0 1 o
Mean 1.18 0.95 0.85 0.95 3 OO Open questions:
Median 1 0 0 1 2 T T - ing time?
N - - = 5 é . fj FJ m How to reduce the total testing time?

- Will our findings hold for other tools?
We apply Wilcoxon test to evaluate the hypothesis that Sapienz with 3 metrics will on 8

average find more faults than Sapienz with 1 metrics executed 3 times. The results of the

test allowed to reject the null-hypothesis (that there is no difference) with p-values equal

0.008, 0.0005, and 0.007 for activity, method and instruction coverage, respectively. References

[1] S. R. Choudhary, A. Gorla and A. Orso “Automated test input generation for Android: Are we

Conclusion: The three metrics, when executed once, find on average more bugs in an app there yet?” in ASE 2015
. [2] K. Mao, M. Harman and Y. Jia “Sapienz: Multi-objective automated testing for Android
than each individual metric applied within 3 runs. applicatiions” in ISSTA 2016.

[3] Google, Ul/App Exerciser Monkey, https://developer.android.com/studio/test/monkey

QCRI
ey

il MK

EOtTE Luxembourg aeds > !-g
t:‘)‘(f—;; O‘J gé ’ HAMAD BIN KHALIFA UNIVERSITY -

mailto:olga.gadyatskaya@uni.lu
mailto:olga.gadyatskaya@uni.lu
mailto:olga.gadyatskaya@uni.lu
mailto:yzhauniarovich@qcri.edu.qa

