
Experiment 3: 1 run x 3 metrics vs 3 runs x 1 metric

For the 100 apps selected for the second experiment, we compute the number of faults
detected jointly by 3 metrics and the number of faults found by each individual metric in
3 runs.

The Influence of Code Coverage Metrics on
Automated Testing Efficiency in Android

Context

Conclusions

Automated testing and dynamic analysis techniques are critical for ensuring the reliability and the security of third-party Android apps.

One of the biggest challenges for these techniques is effective app exploration in the black-box setting. Android apps have many entry points,
and their source code is unavailable for inspection. State-of-the-art tools utilize a wide variety of app exploration strategies that range from
generating random GUI events to systematic exploration of apps models [1], but there is no agreement on the success criteria.

Code coverage is a common metric used to evaluate efficiency of automated testing and dynamic analysis tools [1], and some of these tools
utilize code coverage as a component of a fitness function to guide app exploration and find more bugs [2].

Code coverage exists in many flavors, and there is currently no agreement in the community on which metrics to use in the fitness function.
Are they all the same, or is there a code coverage granularity that works best? We make the first step towards reaching this agreement.

Hypothesis

Combining different
granularities of code
coverage can be beneficial
for achieving better results
in automated testing of
Android apps.

Experiment setting

Sapienz [3] is a state-of-the-art bug finding tool for Android apps. It relies on Monkey [3] to generate
random input events; and applies a genetic algorithm to event sequences. The test selection function
combines code coverage, the number of found bugs, and the size of a test sequence. Sapienz is
designed to utilize activity, method and statement coverage. We set out to evaluate how these metrics
fare against each other in finding bugs.

Activity coverage was computed by Sapienz, and method and instruction coverage were measured with
our own ACVTool (the tool is currently available at https://github.com/pilgun/acvtool).

References

[1] S. R. Choudhary, A. Gorla and A. Orso “Automated test input generation for Android: Are we
there yet?” in ASE 2015
[2] K. Mao, M. Harman and Y. Jia “Sapienz: Multi-objective automated testing for Android
applicatiions” in ISSTA 2016.
[3] Google, UI/App Exerciser Monkey, https://developer.android.com/studio/test/monkey

Experiment 1: Comparing the metrics individually

We randomly selected 500 apps from Google Play and executed
them with Sapienz using each coverage metric.

Olga Gadyatskaya
SnT, University of Luxembourg

olga.gadyatskaya@uni.lu

Stanislav Dashevskyi
SnT, University of Luxembourg
stanislav.dashevskyi@uni.lu

Aleksandr Pilgun
SnT, University of Luxembourg

aleksandr.pilgun@uni.lu

Yury Zhauniarovich
Qatar Computing Research Institute, HBKU

yzhauniarovich@hbku.edu.qa

Experiment 2: Evaluating the randomness impact

We randomly selected 100 apps, and ran Sapienz 5 times for each
app using each coverage metric.

Table 1: Crashes found by Sapienz in 500 apps

Coverage metr ic
unique

crashes

faulty

apps

crash

types

A ct i v i t y 287 203 23

M et hod 317 231 23

I nst r uct i on 322 225 23

T ot al 555 295 26

on how appsaresupposed to behave, testing toolsneed to

automatically uncover their execution paths. In this respect,

codecoveragebecomesan essential metric that estimateshow

well an app hasbeen exercised [2]. Moreover, several state-

of-the-art automated triggering and testing tools use code

coverageto guidetheexploration strategy of apps, e.g., [5–7].

The importanceof codecoveragemetrics for automated

testing and dynamic analysisof Android apps is immediately

evident from theaforementioned related work. Yet, wecould

not f nd in the literature any discussion on which specif c

codecoverage metrics (or granularity levels) work best for

Android. Therefore, the aim of our study is to f ll this gap.

3 OUR STUDY

To investigatewhether dif erent levels of granularity of code

coveragemetric havean ef ect on theresultsof automated

test design tools, wework with Sapienz [7]. It f rst generates

a set of random “seed” test sequences, and then mutates

them trying to improve a Pareto-optimal f tness function

that dependson threecriteria: codecoverage, the length of

a test sequence, and thenumber of app crashes that the test

sequence has uncovered.

Sapienz can usethreecodecoveragegranularities. State-

ment coverage is measured by EMMA [9], a popular but

outdated tool that worksonly for appswith sourcecodeavail-

able. Method coverage is measured by ELLA [3], another

popular but no longer supported tool that often fails with

more recent Android apps. In our experiments, wereplaced

EMMA and ELLA with ACVTool that measuresbytecode

instruction and method coverage [8]. Finally, activity cov-

erage is measured by a plugin in Sapienz. Note that the

codecoveragemeasurement itself doesnot interferewith the

search algorithms used by Sapienz.

As our dataset, wehaverandomly selected 500 apps from

theGooglePlay market, and ran Sapienzagainst each of these

apps, using itsdefault parameters. Each app hasbeen tested

using the activity coverage provided by Sapienz, and the

method and instruction coveragesupplied by ACVTool [8].

On average, each app hasbeen tested by Sapienz for 3 hours

(for each coveragemetric). After each run, wecollected the

crash information (if any), which included thecomponents

of apps that crashed and Java except ion stack t races.

3.1 Descript ive stat ist ics of crashes

Table1 shows thenumbersof crashesgrouped by coverage

metric that Sapienz has found in the500 apps. Weconsider

unique crashes as uniquecombinations of an application, its

Figure 1: Crashes found by Sapienz in 500 apps

component where crash occurs and the line of code that

t riggered an except ion, and a specif c Java except ion type.

In total, Sapienz has found 295 apps out of 500 to be

faulty (at least one crash detected), and it has logged 555

unique crashes with all three coverage metrics. Figure 1

summarizes thecrash distribution for thecoveragemetrics

that found it. As we can see, the intersection of all code

coveragemetrics’ resultscontains115 uniquecrashes (20%

of total found crashes). Individual coverage metrics have

found 58%(instruction coverage), 57% (method coverage),

and 51%(activity coverage) of thetotal found crashes. These

f ndings suggest that dif erent code coverage metrics are

complementary and could be applied together in order to

achieve the best test ing results.

3.2 Evaluat ing behavior on mult iple runs

Likemany other automated testingtoolsfor Android, Sapienz

isnon-deterministic, and our f ndingsmay beaf ected by this.

Todeterminetheimpact of coveragemetricsin f ndingcrashes

on average, weneed to investigatehow crash detection be-

havesin multipleruns. Thus, wehaveperformed thefollowing

two experiments on a randomly selected set of 100 apks.

Performance in 5 runs. Wehaverun Sapienz for 5 times

with each coveragemetrics for each of 100 apps. Thisgives

us two crash populations: �1 that contains crashes detected

in the 100 apps during the f rst experiment, and �5 that

containscrashesdetected in thesameappsrunningSapienz 5

times. Table2 summarizes thepopulationsof crashes found

by Sapienz with each of the coverage met rics.

Asexpected, running Sapienz multiple times increases the

amount of found crashes. In thisexperiment, weareinterested

in theproportion of crashes contributed by coveragemetrics

individually. If coverage metrics are interchangeable (they

do not dif er in capabilities of f nding crashes, and they will,

eventually, f nd thesamecrashes), theproportion of crashes

found by individual metrics to the total crashespopulation

can beexpected to signif cantly increase: each metric, given

more attempts, will f nd a larger proportion of the total

crash population. However, as shown in Table 2, only the

activity coveragehas found a signif cantly larger proportion

of total crash population (59%from 45%). The instruction

coveragehasslightly increased performance(59%from 54%),

while themethod coveragehas fared worse (55% from 62%).

These f ndings suggest that the coverage metrics are not

We apply Wilcoxon test to evaluate the hypothesis that Sapienz with 3 metrics will on
average find more faults than Sapienz with 1 metrics executed 3 times. The results of the
test allowed to reject the null-hypothesis (that there is no difference) with p-values equal
0.008, 0.0005, and 0.007 for activity, method and instruction coverage, respectively.

Conclusion: Different metrics find different bugs.
Conclusion: Even in multiple runs, no individual coverage metric was
able to find all bugs detected by others.

Conclusion: The three metrics, when executed once, find on average more bugs in an app
than each individual metric applied within 3 runs.

Our results show that different code coverage
granularities find different bugs, and (given an
equal execution time) that a combination of 3
different granularities will find more bugs than
any of these metric granularities individually.

Open questions:

- How to reduce the total testing time?

- Will our findings hold for other tools?

mailto:olga.gadyatskaya@uni.lu
mailto:olga.gadyatskaya@uni.lu
mailto:olga.gadyatskaya@uni.lu
mailto:yzhauniarovich@qcri.edu.qa

