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ABSTRACT
Large- and medium-sized organizations employ various security

systems to protect their assets. These systems, often developed

by different vendors, focus on different threats and usually work

independently. They generate separate and voluminous alerts that

have to be monitored and analyzed by often overburdened security

analysts. Prior work has tried to support analysts by better correlat-

ing and prioritizing alerts. In this work, we propose to combine the

wisdom of individual security systems using an Integration Layer

(IL). We validated our idea by deploying the IL in a large global

organization (50,000+ employees) running four very different se-

curity detection systems. We did so by using end-to-end red-team

exercises to generate real attack data. For training, we labeled our

dataset with evaluations directly from the incident response team

instead of using the escalated decisions of the first/second tier Secu-

rity Operation Center (SOC) analysts as in prior works. We showed

that our approach considerably reduces the number of alerts re-

quiring investigation while maintaining very high performance

on multi-step attack detection – Matthews correlation coefficient

(MCC) reaches 0.998. The substantial dependence of the model on

features derived from the different security systems supports the

viability of our integration methodology. The explainability layer

added to our system gives analysts insights into why a particular

case is marked as an attack or non-attack. Based on the test results,

our approach has been added to the production setup.

CCS CONCEPTS
• Information systems → Enterprise applications; • Security
and privacy→ Intrusion detection systems; Usability in secu-

rity and privacy.
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1 INTRODUCTION
Modern enterprises rely on a diverse set of monitoring systems,

such as Endpoint Detection and Response (EDR), Network Intrusion

Detection Systems (NIDS) and User and Entity Behavior Analytics

(UEBA), to detect cyber attacks. These systems analyze different

data streams, such as network traffic, application logs, endpoint logs,

and user behavior. Since these tools are developed by various ven-

dors, they often work independently and generate separate alerts,

which are ingested by a Security Operation Center (SOC), where

first-tier security analysts analyze and triage them. More sophisti-

cated or higher-priority alerts are escalated directly to second-tier

experts, who make the final decision of either closing the alert or

escalating it further to the Incident Response Team (IRT).

The high volume of security alerts, which can reach up to 176 per

host per day according to Shen et al. [56], can lead to alert fatigue

and burnouts of SOC analysts [27, 59]. This can result in attacks

going unnoticed. To address this issue, researchers focused on im-

proving automation in handling alert flows. Some approaches aim

to eliminate repetitive alerts and tasks [1, 12, 37]. Others work on

improving alert triage mechanisms [15, 33, 49]. However, individual

alerts, even high-priority ones, are not always indicative of an at-

tack. Therefore, a third approach has been to focus on finding better

techniques for aggregating and correlating alerts [17, 31, 32, 36] to

create context and link them to actual attacks [61]. In this study,

we propose a novel approach within the third category.

The foundation of our method lies in combining the weak signals

in the noisy event flows produced by individual independent mon-

itoring systems in a so-called Integration Layer (IL) that deploys

machine learning (ML) using Gradient Boosted Trees to detect at-

tacks from the noisy and heterogeneous alert flow. We demonstrate
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that ensembling can strengthen the weak signals in voluminous

alert data, allowing the scarce attention of security analysts, es-

pecially the high-tier ones, to be focused on a much more limited

number of alerts with a high probability of being an attack. We

evaluate our approach in a real-world enterprise with 50, 000+ em-

ployees and find that the integration-layer model can detect all true

positives, 592 attacks, with only 2 false positives. Overall, Matthews

correlation coefficient (MCC), the better metric [5, 13] for a highly

unbalanced dataset case, reaches 0.998 for our model. We also imple-

mented an explainability layer using SHapley Additive exPlanation

(SHAP) [55]. This layer helps SOC analysts to understand how the

model arrived at a diagnostic. This is critical for analysts [2], but

also for compliance purposes. Auditors require an interpretable rea-

son why alerts are being discarded. Our proof-of-concept yielded

successful results, leading the company to move the IL into the pro-

duction environment. Despite the high daily volume of individual

alert flows coming into the SIEM, the outcome of the IL remains

typically around 2-3 alerts per day, and the system maintains the

same level of performance as outlined in this study.

Two recent studies made advances in a similar direction and

were also evaluated on real-world enterprise networks, like our

approach. These studies take a different technical approach to en-

sembling. DeepCASE [61] analyzes security events as part of a

sequence of relevant prior events using a recurrent neural network

with an attention mechanism. The sequences can contain alerts

from heterogeneous monitoring systems. If a sequence is new, an-

alysts are asked to label it. Sequences that are sufficiently similar

to those that were already labeled, do not have to be investigated

again. This approach is different from ours as it does not actually

attempt to detect attacks but sets out to reduce the workload of

analysts. SIERRA [33] uses unsupervised anomaly detection to iden-

tify “time-slots” that likely contain a security incident. In contrast,

our approach uses supervised learning, leveraging the labels from

incident-response investigations.

Two further points set our approach apart from the state of the

art. First, we evaluated the performance with high-quality ground

truth data generated by red-team exercises, all mixed in with the

regular traffic of the enterprise. Prior work evaluated detection

rates using either synthetic attack traces or SOC labels as ground

truth. Second, we use training labels (attack/no attack) that are

based on the evaluations done by the IRT rather than by the SOC

(i.e., first and second-tier analysts). Previous approaches have relied

on SOC labels [23, 48] or even simulations [9, 14]. While SOC labels

are a reasonable proxy, they obscure the fact that, in most cases,

SOC analysts do not actually establish the final verdict on whether

an alert sequence actually was an attack. Rather, the SOC analysts

escalate potential attack alerts to the IRT, which is responsible

for making the final call (i.e., close or respond). The high-quality

verdicts by the IRT, compared to the more noisy SOC escalations,

ultimately yield better training data for our models. We show that

this leads to a reduced number of false positives and false negatives.

Furthermore, we demonstrate that any organization can ben-

efit from a similar IL. In fact, our proof-of-concept is supported

by standard components: XGBoost [11] for detection, Matthews

correlation coefficient for evaluation, and SHAP values for explain-

ability. These components are highly optimized, enabling the IL

to process outputs from individual detection systems efficiently.
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Figure 1: Incident detection and response flow with IL. The
IL components are indicated with dashed lines.

Given that even large organizations do not generate an excessive

volume of alerts, the IL does not demand substantial computational

resources and can be deployed on a standard server. Nevertheless,

it generates high-quality alerts that warrant prioritization by the

company’s IRT. For Small and Medium Enterprises (SMEs) relying

on Managed Security Service Providers (MSSPs), this approach may

reduce response times and facilitate faster threat mitigation.

2 INTEGRATION LAYER
The objective of our work is to develop a method to detect compro-

mised endpoint devices within a large and complex organization

exposed to various attack vectors, including zero-days, by consol-

idating weak signals present in noisy event flows generated by

independent monitoring systems.We study an enterprise network

with a set of endpoint devices monitored by variousmonitoring sys-
tems, such as Security Information and Event Management (SIEM),

Endpoint Detection and Response (EDR), Network Traffic Anal-

yser (NTA), and in-house solutions (sets of custom rules run over

web-proxy data), alongside providers of auxiliary data. Given that

organizations use the best available solutions, these systems are

often developed by different vendors. When abnormal activity is

detected by the rule- or anomaly-based detection engines of these

systems, they generate alerts, also referred to as security events or
alarms. A simplified typical process flow of incident detection and

response in a large organization is shown in Figure 1.

The alerts from the security monitoring systems are forwarded

to the SOC, where they are centrally stored and analyzed. In large

SOCs, the security analyst team may be organized into multiple

roles. Some analysts perform initial scans, identifying straightfor-

ward cases. Other analysts specialize in addressing more complex

or escalated incidents. As a result, all alerts are divided into ones

that should be ignored (i.e. non-suspicious) and those that require

further investigation (suspicious). The latter is sent to Incident Re-
sponse Team (IRT). There, experts investigate each obtained alert,

draw final conclusion if it is related to an attack, and take action.

Note that in the case of smaller companies, a Managed Security

Service Provider (MSSP) typically acts as a SOC, forwarding the de-

tected alerts back to the organization. There, security professionals,

acting as IRT, analyze the obtained alerts and respond to them if

the threat is real. Thus, the conclusion about an alert is still made

on two levels: SOC analysts report if an alert is suspicious or not,

while IRT experts determine the final verdict if an alert is related

to a real attack.
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Figure 2: IL components.

This setup, however, has some issues. First, the monitoring sys-

tems produce significant numbers of false positives [2]. Second,

they are independent. Therefore, events, although connected to

the same incident, are not analyzed as such. We may rely on SOC

analysts to infer these relations, but given the ever-increasing num-

ber of alerts, they will likely be overwhelmed and unable to draw

meaningful conclusions, missing alerts or ignoring “less important”

ones [27, 59]. Another possible solution is to develop rules for all

possible types of attacks. However, it is not viable, given the number

of possible attacks and the quadratic dependency of connections to

the number of detection systems. Additionally, although a cyber

attack consists of similar steps, the timing, techniques, and order

are at the attacker’s will. Therefore, describing all potential combi-

nations in the first-line detection systems is nearly impossible.

In this work, we propose to add the Integration Layer (see dashed-
outlined components in Figure 1) to the current security setup of

a company. Its goal is to collect alerts and auxiliary data from

individual security and monitoring systems, fuse them, and, based

on this information, conclude whether a particular endpoint device

is compromised. Figure 2 shows the main components of the IL.

The intuition behind our approach is the following: an attacker’s

malicious activity will likely generate alerts from several detection

systems. For instance, an email analysis system may signal if an

email contains some specific suspicious words. It may contain a

link, which, being checked by a URL-checking system, may gener-

ate an alert if the website is co-hosted with other known phishing

web pages. Similarly, a SIEM system may raise a security event

when a user opens a link outside normal working hours. All these

alerts, most probably, will be of low priority (as they also may be

caused by a legitimate use) and distinct in time. Thus, they will

not attract analysts’ attention, and the attack may run undetected.

However, if combined and enriched with auxiliary data, these alerts

will reinforce the signal of a compromise and allow the IL to make

a correct detection even in the case of slow, multi-step attacks [34].

While Security Orchestration Automation and Response (SOAR)

systems also correlate alerts and guide security analysts towards

task automation, typically, they are limited to vendor (AI) capabili-

ties. Unlike the IL, they cannot be fully tailored to organisations’

specific needs and often suffer from a lack of explainability. Further,

the architecture design of the organisation may not allow the SOAR

to ingest all alerts.

Data Collector. Events from different monitoring systems are col-

lected by Data Collector. In our work, we employ alerts generated

by a SIEM, NTA, EDR, and an in-house security system developed

in the company. In our case, all these systems are developed by

different vendors. However, other organizations may accommodate

other setups where the same vendor backs several detection sys-

tems. Additionally, a company may run other monitoring solutions

that may provide Auxiliary Data about the context of an attack.

For instance, one can collect information about users’ requests to

a corporate DNS resolver or end-point average CPU load. In our

case, we collect information about the users’ Internet connections

from the corporate web-proxy server. To each event, we add an

additional attribute about its source, i.e., what detection system has

generated it. This allows us to design and calculate features based

on the data yielded by a particular source.

Correlator. Collected events and auxiliary data threads have differ-

ent attributes, schemas and formats, so we need a component that

would combine them into clusters (which we call data bursts) that
can be bound to or represent attacks. In this work, we define an

attack as a kill-chain related to the compromise of a corporate user
during a given period. Thus, within the IL, an attack is represented

by a data burst that consists of all security alerts produced by mon-

itoring systems and auxiliary data threads related to an individual

user (identified by a Corporate Key (CK)) during a particular Day.
Note that alerts and auxiliary data threads do not always contain

those values. For instance, some security systems do not capture

CK attribute value. Fortunately, it is usually possible to infer the

values of these attributes based on some other attributes’ values

given some assumptions. For instance, we can obtain the CK value

based on the “IP address” or “Hostname” attribute value, given the

(straightforward) assumption that during a particular day, only one

user uses a single workstation.

Detection Framework. Detection Framework is responsible for detect-

ing alerts related to attacks and explaining diagnoses. It consists of

three elements: Feature Extractor, Detector, and Explainer. Feature
Extractor excerpts a feature vector from each data burst following

the procedures defined by Extraction Pipeline. Detector makes di-

agnoses using the Detection Model whether a feature vector and
a corresponding data burst are related to an attack or not. Finally,

Explainer explains how Detector has reached this conclusion.

3 DATASETS
To design and evaluate our method, we rely on data collected in

a large organization (50,000+ employees). We deployed our col-

lector and gathered independent alerts from four security detec-

tion systems (SIEM, NTA, EDR, and IN-HOUSE). We captured real

alerts during two periods: 05.06.2021-20.07.2021 (training/validation
datasets) and 01.08.2021-31.08.2021 (test dataset). Table 1 shows

the number of alerts generated by these systems that are used in

our training/validation (first row) and test datasets (second row).

In total, the train/validation and test datasets contain 87, 747 and

49, 613 individual alerts, correspondingly. We aggregate the indi-

vidual collected alerts by CK and date. After these operations, we

obtain the training/validation and test datasets consisting of 55, 615

and 30, 769 samples correspondingly (see Table 2).

In real life, actual attacks are luckily very rare; therefore, to get

ground-truth data, we employ a Red Team that regularly performs

end-to-end exercises (grounded in the MITRE ATT&CK frame-

work [40]) to collect more events of this nature. The primary differ-

ence from an actual attack is the lack of malicious intent from the

red team members. The Red Team operates entirely independently
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Table 1: Data for train/validate and test sets

Dataset Period Number of Individual Alerts
SIEM NTA EDR IN-HOUSE Total

Training 05.06.2021

13,920 9,121 2,537 62,169 87,747
20.07.2021

Test 01.08.2021

6,796 7,693 2,522 32,602 49,613
31.08.2021

Table 2: Datasets details

Dataset Number of Samples
Non-attack Attack Total

Initial 55,615 12 55,627

After Oversampling 55,615 2,952 58,567

Training 44,492 2,360 46,852

Validation 11,123 592 11,715

Test 30,769 4 30,773

from SOC and Incident Response Teams. Its goal (and one of the

criteria based on which its performance is evaluated) is to get access

to a particular end-point device. Our training and validation dataset

comprises 12 attack-labeled rows, while the test dataset includes

4. The attack-labeled samples in the test dataset correspond to an

end-to-end Red Team exercise spanning four consecutive days on

a single workstation. The Red Team activities during the first two

days were stealthy and minimal, while days 3-4 exhibited moderate

levels of noise. The aim was to explore the earliest point at which

our models could detect these attacks.

As expected in a real environment, even with red-team activi-

ties, we have a very unbalanced dataset, where only 0.02% of the

total entries are related to attack data. Such an imbalanced dataset

can significantly compromise the performance of machine learning

algorithms because they cannot effectively learn the decision bound-

ary due to the low number of minority class samples [24]. To make

our training dataset more leveled, we perform additional balancing.

We use the Synthetic Minority Oversampling TEchnique (SMOTE)

proposed by Chawla et al. [10] to create artificial attack-related sam-

ples. As a result, we obtain a dataset containing 2, 952 attack-related

samples and the same 55, 615 non-attack-related entries (see the

row “After Oversampling” in Table 2). After this operation, we get

a more balanced training dataset, where around 5% of the entries

are attack-related, and the rest belong to the non-attack class.

After the dataset is balanced using the described approach, we

split it into training and validation sets in a proportion of 80% and

20%, respectively. The split is stratified
1
according to attack/non-

attack and artificial/non-artificial samples (see rows 3 and 4 in Ta-

ble 2). The attack/non-attack stratification guarantees that the vali-

dation set also contains ourminority class (attacks). The artificial/non-

artificial stratification accounts for the fact that we also want to

have an equal distribution of real attacks and attacks generated by

SMOTE in the training and validation sets. In that way, we ensure

there is no bias toward only detecting SMOTEd attacks.

The last row in Table 2 shows the test dataset details. We utilize

this independent set to test the performance of ourmodels on totally

unseen data (temporal training consistency [50]), which is also not

used to tune any model hyperparameter.

1
Stratification means that relative class frequencies are approximately preserved.

Table 3: Point distribution per quantile and source

SIEM, NTA, IN-HOUSE EDR
1
𝑠𝑡

quantile: 1 point 1
𝑠𝑡

quantile: 2 points

2
𝑛𝑑

quantile: 1.5 point 2
𝑛𝑑

quantile: 3 points

3
𝑟𝑑

quantile: 2 points 3
𝑟𝑑

quantile: 4 points

4
𝑡ℎ

quantile: 2.5 points 4
𝑡ℎ

quantile: 5 points

4 DETECTION APPROACHES
This section explains how we build and fit together the elements

that constitute our rule-based and ML-based detection approaches

(see Figure 2). There are two main benefits to building a rule-based

method. First, it provides explainable and straightforward results.

Second, in this study, we use a dataset (see Section 3) that is unique
(to the best of our knowledge, no similar datasets exist on which we

can test our approach) and private (as this type of security data is

highly sensitive and cannot be shared even in an anonymous form).

Therefore, we need a baseline to compare to our ML-based model.

4.1 Rule-Based Approach
In this work, we experimented with six different rule-based models.

We started with a very simple model that only performs alert count-

ing. Then, we built the subsequent models, gradually increasing

their complexity, taking into account alert importance, data sources,

and various weighting schemes:

𝑅1 Sum the total number of daily alerts for all data sources;

𝑅2 Sum the number of alerts over time for all data sources;

𝑅3 Sum the number of alerts over time, weighted per alert im-

portance for every data source;

𝑅4 Integrate the total number of daily alerts using quantile

attributions to normalize the contribution of each source;

𝑅5 Integrate the total number of daily alerts using quantile

attributions to normalize the contribution of each source,

giving EDR higher importance;

𝑅6 Integrate the number of alerts weighted per alert importance

and use quantile attributions to normalize the contribution

of each source.

Based on our evaluation (see Section 5.1), the best-performing

rule-based method is 𝑅5. To build the extraction pipeline for this

approach, we undertake several steps. Firstly, we utilize our training

dataset to generate the distributions of alerts per CK and day for

each source (EDR, SIEM, NTA, and IN-HOUSE). Next, we divide

each distribution into quantiles and assign a predetermined number

of points to each sample, based on the source and quantile. Based

on our team experience, we assign EDR alerts more weight (𝑥2)

compared to alerts from other sources, given that we focus on

endpoint attacks. The final point values are outlined in Table 3.

Note that the simplicity of this model facilitates the analyst’s ability

to provide clear explanations for diagnostic results.

We highlight that the rule-based approaches provide us a ranked

view of “how many points” a particular user on a given day scores.

For instance, if we take the 𝑅1 rule, which counts the number of

alerts per user from all data sources, then the ranked view would

show the users sorted in descending order by the number of alerts

per day. Hence, the rules themselves do not determine a threshold
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that, if crossed, should trigger a detection. The choice of an optimal

threshold is a mathematically ill-defined problem [4], raising an

𝐹𝑃-𝐹𝑁 dilemma in our case: we want to avoid False Negatives, FNs

(missing an attack) as much as possible but, at the same time, do

not want to overload the analysts with False Positives, FPs (non-

attacks that the models misjudge as real attacks) [2]. We define the

threshold based on the maximum number of FPs the SOC team

can investigate within a day while minimizing the number of FNs.

Based on the interaction with the SOC team, we estimate that the

analysts can handle around 5 extra FPs per day coming from the IL

without disrupting the other daily activities.

4.2 Machine-Learning-Based Approach
Due to the lack of explainability in the past, cybersecurity and

machine learning were not viewed as compatible until recently.

However, with the advances in this area [44], nowadays, more

and more security detection solutions employ a machine-learning

engine. In this work, we rely on a supervised machine-learning

algorithm performing two-class classification. If designed properly,

supervised machine-learning algorithms outperform unsupervised

ones, but they require careful design to detect previously unseen

attack patterns. Further, we show how we achieved this goal.

Feature Extractor. Based on the collected data, relevant literature

review and our experience, we have engineered an initial list of

features. The majority of the features are trivial and mentioned

in the literature: the daily number of alerts from each source; the

number of important alerts
2
from each source and totals; the num-

ber of bytes-in and bytes-out; flags if specific detection system’s

rules are triggered (e.g., data exfiltration or beaconing [25]), etc.

At the same time, several features are unique and, to the best of

our knowledge, have not been mentioned in literature before. One

such feature is 𝑟𝑎𝑛𝑑𝑜𝑚𝑛𝑒𝑠𝑠_𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚𝑖𝑡𝑦_𝑚𝑖𝑛, which is calculated

as follows. At first, for each CK, we obtain a list of domains the

corresponding user visited during the day. For each domain, we

calculate the 𝑟𝑎𝑛𝑑𝑜𝑚𝑛𝑒𝑠𝑠_𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚𝑖𝑡𝑦 of content types – counting

how many times each content type is used to request data from the

domain and extracting the maximum value (percentage). Then, we

take the minimum value for all domains visited by that CK. Table 4

lists examples of the designed features, their types, and a more

detailed explanation of how to calculate them.

After obtaining the initial list of the features, we apply a feature

reduction process. There are several reasons for doing so: first, it

reduces noise, thus allowing our model to learn the right patterns

in the data. Second, a smaller number of features increases the

performance of ML models [3] because they need to take fewer

dimensions into account. Last but not least, it increases the explain-

ability of our ML model results (see Section 5.2), which improves

usability and augments the trust in the model by security analysts.

Our feature selection process consists of two stages. During the

first stage, we remove features with highmutual correlation. During

the second stage, we use Principal Component Analysis (PCA), a

dimensionality reduction algorithm, to guarantee we obtain the

smallest set of features explaining the largest portion of the data

2
We have created a list of important alert types for each source and count the number

of alerts that fall into this category.
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Figure 3: Logarithmic loss per number of estimators.

variance [53], more than 99% in our case. As a result, we obtained a

list of 32 features that we use further (marked as “Final” in Table 4).

Detector. As a base for our ML-based model, we use a distributed,

efficient, and flexible implementation of a decision-tree-based gra-

dient boosting algorithm [21] called XGBoost [11]. We chose this

implementation due to its high performance and low memory foot-

print [47]. We use a logistic regression objective function for binary

classification, obtaining an output with boundary conditions [0,1].

As a loss function, we use logarithmic loss. XGBoost uses the loga-

rithmic loss to learn the relation between input and output. Hence,

the better the model learns the relationships, the more reliable the

results. In Figure 3, we show that our logarithmic loss drops rapidly

(around 20 rounds) close to zero for both train and validation sets

and remains constant after that. The fact that the error for the vali-

dation set does not increase with the number of estimators suggests

that our model does not overfit. To choose hyperparameters’ values

(learning rate, minimum loss reduction, number of trees, and maxi-

mum depth), we used a grid search using a 3-fold cross-validation

method over the training data, applying a random sub-sampling of

80% and L1 regularization to avoid overfitting.

Explainer. Compared to a simple rule-based approach (e.g., 𝑅5),

which is formulaic and therefore fully explainable, the outcome of

a boosted-tree algorithm (or any ML-based model) is, by definition,

less explainable. XGBoost provides users with a global feature im-

portance view that tells what features, on average, are the most

important ones. However, it does not provide an explanation of

how and why the model comes to every individual diagnosis that is

required for a security analyst to explain a particular result. Hence,

we also utilize SHAP values [55] to provide security analysts with

insights on an individual sample basis. SHAP values show the pos-

itive and negative relationships between features and ML output

and the most important features contributing to such output.

5 EVALUATION
Attacks per se, and especially according to our definition (see Sec-

tion 2), are very rare events. However, due to the presence of

SMOTEd samples, our validation set contains several attacks. That

allows us to evaluate if and to what extent our models are able to

detect unseen artificially generated attacks as well as real red-team
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Table 4: Feature list

# Final Feature Name Data Type Description
Features from Alerts Data

1 ck_occ Integer, [1,∞) Total number of alert occurences from four detection systems for the given CK per given date

2 ✓ ck_occ_ratio Float, [1.0,∞) Ratio for the current CK of all alerts from the beginning of the period including the current date and

all alerts from the beginning of the period excluding the current date

3 ✓ edr Integer, [0, 𝑐𝑘_𝑜𝑐𝑐 ] Number of alerts from the EDR system per given date

4 ✓ edr_important_alert Integer, [0, 𝑒𝑑𝑟 ] Number of alerts triggered from a list of EDR important alerts per given date

5 ✓ edr_ratio Float, [1.0,∞) Ratio for the current CK of EDR alerts from the beginning of the period including the current date

and EDR alerts from the beginning of the period excluding the current date

6 siem Integer, [0, 𝑐𝑘_𝑜𝑐𝑐 ] Number of alerts from the SIEM system per given date

7 ✓ siem_important_alert Integer, [0, 𝑠𝑖𝑒𝑚] Number of alerts triggered from a list of SIEM important alerts per given date

8 ✓ nta Integer, [0, 𝑐𝑘_𝑜𝑐𝑐 ] Number of alerts from the NTA system per given date

9 ✓ nta_important_alert Integer, [0, 𝑛𝑡𝑎] Number of alerts triggered from a list of NTA important alerts per given date

10 ✓ nta_ratio Float, [1.0,∞) Ratio for the current CK of NTA alerts from the beginning of the period including the current date

and NTA alerts from the beginning of the period excluding the current date

11 ✓ nta_total Integer, [0, 𝑛1 ] Sum of NTA alerts from the beginning of the period until a given date for a given CK

12 ✓ in_house Integer, [0, 𝑐𝑘_𝑜𝑐𝑐 ] Number of alerts from the IN-HOUSE system per given date

13 ✓ in_house_important_alert Integer, [0, 𝑖𝑛_ℎ𝑜𝑢𝑠𝑒 ] Number of alerts triggered from a list of IN-HOUSE important alerts per given date

14 ✓ in_house_ratio Float, [1,∞) Ratio for the current CK of IN-HOUSE alerts from the beginning of the period including the current

date and IN-HOUSE alerts from the beginning of the period excluding the current date

15 ✓ in_house_total Integer, [0, 𝑛1 ] Sum of IN-HOUSE alerts from the beginning of the period until a given date for a given CK

16 ✓ deprecated_useragent_seen Binary, {0, 1} Did “Deprecated User-Agent” IN-HOUSE model trigger

17 ✓ data_exfiltration_seen Binary, {0, 1} Did “Data Exfiltration” IN-HOUSE model trigger

18 ✓ num_diff_src Integer, [1, 4] Distinct number of detection systems that triggered at least once per given date

Auxiliary Data Features
19 ✓ bytes_out_sum Integer, [0,∞) Sum of bytes-out in Proxy data per CK per date

20 bytes_in_sum_agg Integer, [0,∞) Sum of bytes-in in Proxy data

21 ✓ bytes_out_sum_avg Float, [0.0,∞) Average of bytes-out in Proxy data per CK per date

22 ✓ bytes_out_sum_non_categorized Integer, [0.0,∞) Sum of bytes-out to domains not categorized by Proxy per CK per date

23 ✓ bytes_out_sum_q25 Integer, [0,∞) First quartile of 𝑏𝑦𝑡𝑒𝑠_𝑜𝑢𝑡_𝑠𝑢𝑚

24 ✓ bytes_out_sum_q75 Integer, [0,∞) Third quartile of 𝑏𝑦𝑡𝑒𝑠_𝑜𝑢𝑡_𝑠𝑢𝑚

25 ✓ bytes_out_sum_std Float, [0.0,∞) Standard deviation of 𝑏𝑦𝑡𝑒𝑠_𝑜𝑢𝑡_𝑠𝑢𝑚

26 ✓ bytes_out_sum_var Float, [0.0,∞) Variance of bytes_out_sum

27 ✓ get_bytes_ratio Float, [0.0, 1.0] Ratio of 𝑏𝑦𝑡𝑒𝑠_𝑖𝑛_𝑠𝑢𝑚/(𝑏𝑦𝑡𝑒𝑠_𝑖𝑛_𝑠𝑢𝑚 + 𝑏𝑦𝑡𝑒𝑠_𝑜𝑢𝑡_𝑠𝑢𝑚) of connections with “GET” requests

28 ✓ no_of_rare_uas Integer, [0,∞) Number of rare user agents observed in Proxy traffic

29 ✓ url_substring_max_cnt Integer, [0, 𝑠2 ] Max size of a sub-string in a URL

30 domains_dst_cnt Integer, [0,∞) Count of distinct domains CK connected to that day

31 uncategorized_domains_cnt Integer, [0,∞) Number of uncategorized domains user connected to that day

32 ✓ uncategorized_domains_percent Float, [0.0, 100.0] Ratio 𝑢𝑛𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑧𝑒𝑑_𝑑𝑜𝑚𝑎𝑖𝑛𝑠_𝑐𝑛𝑡/𝑑𝑜𝑚𝑎𝑖𝑛𝑠_𝑑𝑠𝑡_𝑐𝑛𝑡 in percent

33 ✓ suspicious_tld_dst_cnt Integer, [0,∞) Number of distinct domains with suspicious Top Level Domain that a user connected to that day

34 ✓ suspicious_tld_percent Float, [0.0, 100.0] Ratio 𝑠𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠_𝑡𝑙𝑑_𝑑𝑠𝑡_𝑐𝑛𝑡/𝑑𝑜𝑚𝑎𝑖𝑛𝑠_𝑑𝑠𝑡_𝑐𝑛𝑡 in percent

35 ✓ ssl_inspected_dst_cnt Integer, [0,∞) Number of distinct SSL inspected domains user was connected to

36 ✓ randomness_uniformity_min Float, [0.0, 100.0] 𝑟𝑎𝑛𝑑𝑜𝑚𝑛𝑒𝑠𝑠_𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚𝑖𝑡𝑦 is calculated by counting distinct content type connections per domain

and getting maximum value in percent. For instance, if a user connects to domain1.com 10 times,

each time requesting data with content type ‘text/plain’, then the 𝑟𝑎𝑛𝑑𝑜𝑚𝑛𝑒𝑠𝑠_𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚𝑖𝑡𝑦 is

100. If the user connects to domain2.com 10 times, 8 times requesting data with the ‘text/plain’

content type and 2 times with ‘text/javascript’, then 𝑟𝑎𝑛𝑑𝑜𝑚𝑛𝑒𝑠𝑠_𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚𝑖𝑡𝑦 is 80. Accordingly,

𝑟𝑎𝑛𝑑𝑜𝑚𝑛𝑒𝑠𝑠_𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚𝑖𝑡𝑦_𝑚𝑖𝑛 for this user is 80.

37 ✓ randomness_uniformity_q95 Float, [0.0, 100.0] Count distinct content types per domain and get the maximum value in percent. Get the 95th quantile

of the obtained values.

1. 𝑛 is a sum of 𝑐𝑘_𝑜𝑐𝑐 up to the current date for a given CK

2. https://stackoverflow.com/a/417184/1108213

attacks. In addition, we evaluate our system on the test set that

only contains real data (i.e., no SMOTEd samples).

Unfortunately, the commonly used metrics like precision, recall,

accuracy, or F1-measure can be either overly optimistic about the

results or very difficult to directly compare [5, 13]. Therefore, to

compare the performance of our models, we have chosen the met-

rics that account for the fact that our dataset is very unbalanced:

Matthews correlation coefficient (MCC) [38] and the Area Under the
Precision-Recall Curve (PR-AUC) metrics. MCC is a re-definition of

Pearson’s coefficient that measures the quality of a binary classifier

with the advantage of accounting for the weight of all classes. The

PR-AUC metric is used instead of the more common area under

the receiver operating characteristic (ROC-AUC) curve because the

latter is overly optimistic for unbalanced datasets, and even a small

number of (in)correct results can result in a significant change in

ROC-AUC [54]. Additionally, we use McNemar’s test [39], a paired
and non-parametric nominal test, to claim that one model is dif-

ferent than another with at least 95% confidence. Finally, we also

report the commonly used metrics for reference.

5.1 Rule-based Approach
Before proceeding with the evaluation of rule-based methods, it is

necessary to define the threshold values that align with the com-

pany’s business requirement. To determine the appropriate thresh-

old value for each rule-based model, we evaluated the performance

of each model on our training dataset, minimizing the number

https://stackoverflow.com/a/417184/1108213
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Table 5: Metrics for all 6 different rule-based models.

Metrics Rule-based Models
R1 R2 R3 R4 R5 R6

Precision (P) 0.596 0.909 0.667 1.000 0.981 0.995

Recall (R) 0.095 0.221 0.129 0.160 0.438 0.312

Accuracy (Acc) 0.951 0.960 0.953 0.958 0.971 0.965

MCC 0.224 0.437 0.280 0.391 0.645 0.547

Table 6: Confusion matrix and metrics values for the best
rule-based and ML-based models

Model Number of P R Acc MCCTP FP TN FN
𝑅5 259 5 11,118 333 0.981 0.438 0.971 0.645

ML-based (IRT) 592 2 11,121 0 0.995 1.0 1.0 0.998

ML-based (SOC) 597 31 11,090 7 0.933 0.995 0.996 0.968

of false negatives while ensuring that the number of false posi-

tives remains limited to a maximum of 5 per day according to the

company’s business requirement. After finding the threshold, we

evaluated each model on the validation dataset. The results of this

evaluation are reported in Table 5. As we can see, the rule-based

method 𝑅5 shows the highest MCC (precision/recall and accuracy

as well). In addition, McNemar’s test shows that with at least 95%

confidence, 𝑅5’s results are statistically different than 𝑅1, 𝑅2, 𝑅3, and

𝑅4 and comparable to 𝑅6. Given the highest MCC, 𝑅5 is considered

forward as our baseline rule-based model.

The first row in Table 6 shows the number of TP, FP, TN, and

FN for the best rule-based model (𝑅5). As can be seen, it performs

moderately, correctly capturing 259 out of 592 attacks. It misses 333

attacks and wrongly classifies 5 samples as attacks. The remainder

of the data, 11, 118 entries, are correctly classified as non-attacks.

The metrics for 𝑅5 were determined using a threshold value of

8.5. However, reducing this threshold to 8.0 caused a significant

spike in the number of false positives, reaching hundreds. This

sudden rise in false positives highlights the delicate balance between

differentiating attack and non-attack classes and the challenges in

accurately determining legitimate behavior versus an attack. This

observation suggests that “anomaly detection” strategies may not

be effective in this domain, as they primarily aim to identify outliers

that are significantly separated from “normal traffic”. The sharp

increase in false positives also indicates that the model is too simple

to understand the nuances of less obvious entries.

Note that creating rule-based models requires expert knowledge

of how detection systems results correlate and what type of alerts

should be prioritized. For instance, based on our experience and

the interaction with the SOC team, we know that the EDR system

deployed in the organization produces stronger evidence of compro-

mise. Hence, we assign higher weights to them. Obviously, given the

complex nature of the cyber detection space, an expert cannot grasp

all subtle connections between different types of alerts and their

influence on the attacks. That and the moderate results achieved by

rule-based approaches further suggest that ML-based models will

perform much better in this task. Still, as we already mentioned,

the rule-based model gives a baseline that can be compared against.
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Figure 4: Precision-recall curve for ML-based XGBoost (blue)
and rule-based 𝑅5 (orange) models. The horizontal lines rep-
resent their respective average precision (or PR-AUC).

5.2 ML-based Approach
Our ML-based model correctly captures 100% of the 592 attacks

(see Table 6). Of the 594 (592 + 2) alerts classified as attacks, solely

2 are incorrectly classified (False Positives). The remaining 11, 121

entries are correctly classified as non-attacks. Both precision and

recall metrics converge to 1, which makes them impractical to be

used for comparison. As noted in Section 5, we use the MCC metric

instead, which is equal for our ML-based model to 0.998.

One of the novelties of our approach is to utilize labels obtained

directly by the IRT instead of SOC escalations. To quantify that

benefit, we ran the same case, but instead of labeling the data us-

ing the outcome of the IRT verdicts, we utilized SOC escalations

(as positives). We highlight that the IRT labels are a subset of the

SOC escalations, i.e., the IRT receives all escalations from SOC and

decides if they need to be actioned (positives) or closed (negatives).

The results show a significant increase in the number of false posi-

tives (from 2 for IRT to 31 for SOC, see Table 6). The small difference

in the total number of cases for IRT and SOC, 11, 715 and 11, 725,

respectively, is explained by SMOTE and undersampling being done

on sets with a different number of cases labeled as attacks to start

with (12 for IRT — see Table 2, and 71 for SOC).

Figure 4 shows the PR-curve for both 𝑅5 and ML models, high-

lighting the better performance obtained by the ML-based model.

Indeed, PR-AUC, which indicates to what extent a model is better

than a random guess (for which PR-AUC is 0.5), is equal to 0.68

and close to 1 for the 𝑅5 and ML-based models, respectively.

Contrary to the rule-basedmethod, where we rely on the security

team’s experience to define the importance of individual features,

the ML-based model can detect the feature importance using the

labeled training data. We can use this aspect to understand what

features are the most important for the model to make its decision.

The top features impacting the ML model’s verdict are: the number

of rare user agents (10%), ratio bytes in/out for connections with

“GET” responses (9%), number of EDR alerts (8%), number of im-

portant EDR alerts (6%), randomness uniformity (6%), number of

different sources (2%), number of in-house system alerts (1%). These

features alone contribute significantly to the model’s performance.
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Note that, however, it does not mean removing them would yield

to a total loss of performance.

There are several conclusions that we can make from this list

of important features. First, it indicates that proxy and EDR alerts

are significantly more important than the ones coming from other

sources (e.g., NTA and SIEM). That makes sense, as in this work, we

aim at detecting endpoint attacks. Second, it shows that combining

multiple data sources allows for better model performance. This

multi-source dependence validates the need for getting the data

from diverse security systems that monitor different aspects of

an entity’s operation (network, proxy, applications, behavior, etc.),

thus confirming the viability of the IL idea.

We also evaluated our ML-based approach on the test dataset.

Out of 4 attacks (the Red Team performed the attack during 4

consecutive days on the same machine), the IL managed to detect

the attack on the third and fourth day (thus, 2 attacks are detected).

We judge this to be a good result because, during days 1 and 2, the

Red Team was performing just reconnaissance and, therefore, was

very quiet, only triggering 3 and 2 independent alerts, respectively.

For each observation, the IL provides an explanation of its ver-

dict delivered in the form of SHAP values waterfall representation.

Figure 5 shows these representations for two samples (one TP and

one TN) in the test set. These SHAP values waterfall representa-

tions are presented to IRT and SOC experts to provide insight into

how the IL arrives at its conclusions.

The use of SHAP values as a method for explanation has proven

to be effective during the testing phase, receiving positive feedback

from IRT and SOC experts. As a result, it is currently utilized as

the primary mechanism for explaining diagnoses made by the ML-

based approach. The key advantage of this method lies in its ability

to provide local explanations for each individual conclusion, as

opposed to global explanations of feature importance offered by

boosting-tree implementations.

6 DISCUSSION AND LIMITATIONS
We show the advantages of the IL by implementing it to detect

attacks on endpoints. We do not recommend developing a single

“master” model - encompassing every type of attack. Instead, accord-

ing to our research, it is better to build distinct detection models

for every kind of attack, e.g., for attacks on endpoints, servers, or

applications. The reason is that features covering the systems men-

tioned above vary significantly, meaning important features for

endpoint-type detection likely will not be important for an attack

on a server or application. Thus, a natural extension of this work is

to cover other types of attacks, for example, on servers or particular

applications. We highlight that while the features used for detection

on servers or applications may differ, the concept of integrating data

from multiple sources will remain. Academic literature [57] also

suggests tailoring detection models to particular types of attacks.

Utilizing, combining, and correlating different features in an IL

is a generic concept and can be applied to any attack. That said,

the results we report here remain specific to our framework. We

acknowledge that other organizations may have different individual

systems, and that may yield different results.

Currently, we aggregate events daily, i.e. within a day, an attacker

should produce enough malicious activity to trigger the IL. While
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Figure 5: SHAP values for test set samples. Red (blue) bars
represent features positively (negatively) correlated with the
target variable.

this is a realistic scenario (average penetration time is about two

days [51]), some “low-slow” attacks are designed to last multiple

weeks while only a few actions are executed at a time. For instance,

our test dataset includes an attack and during the first two days,

the Red Team performed reconnaissance and executed penetration

only during the third day. Unsurprisingly, our model detects the

attack on the third day. Therefore, another extension of this work

is to focus on modeling these “low-slow” attacks.

There are limitations related to our datasets. Due to privacy

and the sensitive nature of the data, we cannot share our dataset.

Therefore, it is not trivial to compare our approach to others. At the

same time, this is a typical limitation of manyworks in this area [31].

So far, no work has been able to set up a true comparative evaluation

on the same enterprise data. However, we can highlight two points

supporting our conclusions. First, our organization already employs

several state-of-the-art detection systems from leading industry

vendors. Despite the presence of those systems, our IL proved its

effectiveness and is now used as the main system to generate alerts.

Second, in this paper, we did our best to report all the details about

our system. Therefore, other companies can replicate and verify
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the approach. Note that running a similar system should not take a

lot of resources, thus also useful for smaller companies.

The other limitation is the low number of attack samples in the

test data. On the one hand, this result shows that the systems and

procedures developed and employed in the organization have a pos-

itive impact on its security. That said, it is counterintuitive to wish

for more positive samples because they correspond to successful

attacks. On the other, it does not allow us to determine the true

performance of our approach. Thus, it is impossible to evaluate its

real efficiency given only four positive attack samples, two of which

represent “low-slow” cases. Since the IL has been in production, we

can report similar results to the ones presented in this work.

7 RELATEDWORK
Themodern cyber-attack detection landscape is diverse, with a wide

range of solutions. Signature-based systems, such as SNORT and

Bro, use known attack patterns to detect intrusions. Case-based

systems, as proposed in [19], rely on past experiences to detect

new attacks. Knowledge-based systems, such as those based on the

MITRE’s ATT&CK framework, use knowledge of attacker’s tactics,

techniques, and procedures to detect intrusions. Detection methods

can also include rule-based [41], statistical [6], and data mining

or AI-based [7, 16, 18, 29, 30, 33, 42, 43, 46, 56, 61, 62] approaches.

Despite the wealth of options available, there is no widely accepted

approach, set of tools, or underlying strategy for monitoring, de-

tecting, and responding to cyber-attacks [8, 22, 52, 58, 60].

The use of statistical or rule-based approaches for attack de-

tection is attractive because these models are easy to understand,

require minimal computational resources, and are relatively sim-

ple to implement. However, they may not be able to detect more

complex attacks and produce too many alerts. Additionally, setting

the threshold for these models can be an arbitrary or knowledge-

based process, introducing bias and uncertainty [4, 6], as we also

show here. The use of AI in cyber-attack detection and preven-

tion is gaining traction recently [18, 29, 33, 43, 56, 61, 62]. These

approaches tend to be more accurate and precise, detecting even

the most complex activities. However, they come at the cost of

increased computational complexity and longer processing times.

Additionally, the process of data collection and model deployment

is not straightforward, and explaining a machine-learning outcome

is less transparent than in the case of rule-based methods [44].

The capability to detect both known and unknown attacks is cru-

cial for a modern cyber-attack detection system. However, achiev-

ing this level of generalization can be challenging as it often comes

at the cost of negatively impacting the system’s ability to detect

known attacks. For example, systems like DeepCASE [61] shine

at identifying attacks that are similar to previous ones but require

manual intervention for new, unknown attacks. On the other hand,

SIERRA [33] excels at detecting anomalies but also prioritizes a

large number of non-attack-related alerts for investigation.

One significant challenge in detecting actual attacks among a

large number of alerts is their needle-in-a-haystack nature. This

means that only a small percentage of total alerts correspond to

real attacks, which poses a problem when models rely on knowing

the outcome of an alert (i.e. attack or not) to learn and improve.

This problem is not unique to cybersecurity [20, 24] but is crucial

because false negatives have a disproportionately high cost. Unfor-

tunately, only a few intrusion detection works mention that and try

to balance datasets and use appropriate metrics. For instance, Jia et

al. [28] also use SMOTE to increase the number of unrepresented

class samples and random downsampling to decrease the number

of overrepresented class samples. Interestingly, in our work, we

also experimented with the random downsampling technique; how-

ever, our results did not show any increase in the performance of

our models. Li et al. [35] combined SMOTE with a Random Forest

algorithm to automatically oversample minority classes’ samples.

Many attempts have been made to reduce the number of alerts

that a security analyst needs to review, including alert verification,

clustering, and re-prioritization. We refer the interested reader to

the survey works [26, 31, 34, 36] that summarized different ap-

proaches and the corresponding seminal works in this area. Ac-

cording to the developed classification, our approach exploits a

similarity-based correlation technique to combine alerts. However,

in our work, we focus on multi-stage attacks. Their specifics and

other seminal works are surveyed by Navarro et al. [45].

8 CONCLUSION
The overwhelming amount of security alerts generated by detec-

tion systems is a significant challenge faced by security teams in

large organizations. Alahmadi et al. [2] report that a staggering 99%

of these alerts are FPs, making it extremely difficult for security

analysts to efficiently assess the true security risks. To address this

issue, this work introduces the Integration Layer that combines

weak signals from various independent detection systems to in-

crease the accuracy of attack detection and reduce the number of

alerts security analysts need to evaluate. The inclusion of an ex-

plainability component aided security analysts in understanding

the IL model’s decisions and provided evidence for audits.

The evaluation of the IL on the real-life data collected from a

large organization with 50, 000+ employees shows the viability of

our approach: the MCC reaches 0.998 for the ML-based IL. Not sur-

prisingly, the IL, since its implementation, has been fully integrated

into the organization’s security system, and, to date, results have

been consistent with those reported in this study.
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